891 resultados para Automatic forecasting
Resumo:
Feed-forward neural networks (FFNNs) were used to predict the skeletal type of molecules belonging to six classes of terpenoids. A database that contains the (13)C NMR spectra of about 5000 compounds was used to train the FFNNs. An efficient representation of the spectra was designed and the constitution of the best FFNN input vector format resorted from an heuristic approach. The latter was derived from general considerations on terpenoid structures. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The simulation is a very powerful tool to develop more efficient systems, hence it is been widely used with the goal of productivity improvement. Its results, if compared with other methods, are not always optimum; however, if the experiment is rightly elaborated, its results will represent the real situation, enabling its use with a good level of reliability. This work used the simulation (through the ProModel (R) software) in order to study, understand, model and improve the expenditure system of an enterprise, with a premise of keeping the production-delivery flow considering quick, controlled and reliable conditions.
Resumo:
The aim of this paper is to present a procedure that utilizes C-13 NMR for identification of substituent groups which are bonded to carbon skeletons of natural products. For so much was developed a new version of the program (MACRONO), that presents a database with 161 substituent types found in the most varied terpenoids. This new version was widely tested in the identification of the substituents of 60 compounds that, after removal of the signals that did not belong to the carbon skeleton, served to test the prediction of skeletons by using other programs of the expert system (SISTEMAT). (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Image orientation is a basic problem in Digital Photogrammetry. While interior and relative orientations were succesfully automated, the same can not be said about absolute orientation. This process can be automated by using an approach based on relational matching and a heuristic that uses the analytical relation between straight features in the object space and its homologous in the image space. A build-in self-diagnosis is also used in this method, that is based on the implementation of data snooping statistic test in the process of spatial resection, using the Iterated Extended Kalman Filtering (IEKF). The aim of this paper is to present the basic principles of the proposed approach and results based on real data.
Resumo:
This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A multi-agent framework for spatial electric load forecasting, especially suited to simulate the different dynamics involved on distribution systems, is presented. The service zone is divided into several sub-zones, each subzone is considered as an independent agent identified with a corresponding load level, and their relationships with the neighbor zones are represented as development probabilities. With this setting, different kind of agents can be developed to simulate the growth pattern of the loads in distribution systems. This paper presents two different kinds of agents to simulate different situations, presenting some promissory results.
Resumo:
This paper describes two solutions for systematic measurement of surface elevation that can be used for both profile and surface reconstructions for quantitative fractography case studies. The first one is developed under Khoros graphical interface environment. It consists of an adaption of the almost classical area matching algorithm, that is based on cross-correlation operations, to the well-known method of parallax measurements from stereo pairs. A normalization function was created to avoid false cross-correlation peaks, driving to the true window best matching solution at each region analyzed on both stereo projections. Some limitations to the use of scanning electron microscopy and the types of surface patterns are also discussed. The second algorithm is based on a spatial correlation function. This solution is implemented under the NIH Image macro programming, combining a good representation for low contrast regions and many improvements on overall user interface and performance. Its advantages and limitations are also presented.
Resumo:
The objective of this work is the development of a methodology for electric load forecasting based on a neural network. Here, it is used Backpropagation algorithm with an adaptive process based on fuzzy logic. This methodology results in fast training, when compared to the conventional formulation of Backpropagation algorithm. Results are presented using data from a Brazilian Electric Company and the performance is very good for the proposal objective.
Resumo:
This work presents a procedure for electric load forecasting based on adaptive multilayer feedforward neural networks trained by the Backpropagation algorithm. The neural network architecture is formulated by two parameters, the scaling and translation of the postsynaptic functions at each node, and the use of the gradient-descendent method for the adjustment in an iterative way. Besides, the neural network also uses an adaptive process based on fuzzy logic to adjust the network training rate. This methodology provides an efficient modification of the neural network that results in faster convergence and more precise results, in comparison to the conventional formulation Backpropagation algorithm. The adapting of the training rate is effectuated using the information of the global error and global error variation. After finishing the training, the neural network is capable to forecast the electric load of 24 hours ahead. To illustrate the proposed methodology it is used data from a Brazilian Electric Company. © 2003 IEEE.
Resumo:
Semi-automatic building detection and extraction is a topic of growing interest due to its potential application in such areas as cadastral information systems, cartographic revision, and GIS. One of the existing strategies for building extraction is to use a digital surface model (DSM) represented by a cloud of known points on a visible surface, and comprising features such as trees or buildings. Conventional surface modeling using stereo-matching techniques has its drawbacks, the most obvious being the effect of building height on perspective, shadows, and occlusions. The laser scanner, a recently developed technological tool, can collect accurate DSMs with high spatial frequency. This paper presents a methodology for semi-automatic modeling of buildings which combines a region-growing algorithm with line-detection methods applied over the DSM.
Resumo:
This paper presents a new methodology to evaluate in a predictive way the reliability of distribution systems, considering the impact of automatic recloser switches. The developed algorithm is based on state enumeration techniques with Markovian models and on the minimal cut set theory. Some computational aspects related with the implementation of the proposed algorithm in typical distribution networks are also discussed. The description of the proposed approach is carried out using a sample test system. The results obtained with a typical configuration of a Brazilian system (EDP Bandeirante Energia S.A.) are presented and discussed.
Resumo:
This article presents an automatic methodology for extraction of road seeds from high-resolution aerial images. The method is based on a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each one of the road seeds is composed by a sequence of connected road objects, in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. Experiments carried out with high-resolution aerial images showed that the proposed methodology is very promising in extracting road seeds. This article presents the fundamentals of the method and the experimental results, as well.
Resumo:
This work involved the development of a smart system dedicated to surface burning detection in the grinding process through constant monitoring of the process by acoustic emission and electrical power signals. A program in Visual Basic® for Windows® was developed, which collects the signals through an analog-digital converter and further processes them using burning detection algorithms already known. Three other parameters are proposed here and a comparative study carried out. When burning occurs, the newly developed software program sends a control signal warning the operator or interrupting the process, and delivers process information via the Internet. Parallel to this, the user can also interfere in the process via Internet, changing parameters and/or monitoring the grinding process. The findings of a comparative study of the various parameters are also discussed here. Copyright © 2006 by ABCM.