Automatic identification of terpenoid skeletons by feed-forward neural networks


Autoria(s): Emerenciano, Vicente P.; Alvarenga, Sandra A. V.; Scotti, Marcus Tullius; Ferreira, Marcelo J. P.; Stefani, Ricardo; Nuzillard, Jean-Marc
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

10/10/2006

Resumo

Feed-forward neural networks (FFNNs) were used to predict the skeletal type of molecules belonging to six classes of terpenoids. A database that contains the (13)C NMR spectra of about 5000 compounds was used to train the FFNNs. An efficient representation of the spectra was designed and the constitution of the best FFNN input vector format resorted from an heuristic approach. The latter was derived from general considerations on terpenoid structures. (c) 2006 Elsevier B.V. All rights reserved.

Formato

217-226

Identificador

http://dx.doi.org/10.1016/j.aca.2006.07.023

Analytica Chimica Acta. Amsterdam: Elsevier B.V., v. 579, n. 2, p. 217-226, 2006.

0003-2670

http://hdl.handle.net/11449/32282

10.1016/j.aca.2006.07.023

WOS:000241473700010

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Analytica Chimica Acta

Direitos

closedAccess

Palavras-Chave #artificial neural networks #(13)C NMR #spectroscopy #terpenoids #steroids
Tipo

info:eu-repo/semantics/article