993 resultados para hydrogen compounds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen sulfide is toxic and hazardous pollutant. It has been under great interest for past few years because of all the time tighten environmental regulations and increased interest of mining. Hydrogen sulfide gas originates from mining and wastewater treatment systems have caused death in two cases. It also causes acid rains and corrosion for wastewater pipelines. The aim of this master thesis was to study if chemically modified cellulose nanocrystals could be used as adsorbents to purify hydrogen sulfide out from water and what are the adsorption capacities of these adsorbents. The effects of pH and backgrounds on adsorption capacities of different adsorbents are tested. In theoretical section hydrogen sulfide, its properties and different purification methods are presented. Also analytical detection methods for hydrogen sulfide are presented. Cellulose nano/microcrystals, properties, application and different modification methods are discussed and finally theory of adsorption and modeling of adsorption is shortly discussed. In experimental section different cellulose nanocrystals based adsorbents are prepared and tested at different hydrogen sulfide concentrations and in different conditions. Result of experimental section was that the highest adsorption capacity at one component adsorption had wet MFC/CaCO3. At different pH the adsorption capacities of adsorbents changed quite dramatically. Also change of hydrogen sulfide solution background did have effect on adsorption capacities. Although, when tested adsorbents’ adsorption capacities are compared to those find in literatures, it seems that more development of MFC based adsorbents is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidized starch is a key component in the paper industry, where it is used as both surfacing sizer and filler. Large quantities are annually used for this purpose; however, the methods for the oxidation are not environmentally friendly. In our research, we have studied the possibility to replace the harmful oxidation agents, such as hypochlorite or iodates and transition metal catalysts, with a more environmentally friendly oxidant, hydrogen peroxide (H2O2), and a special metal complex catalyst (FePcS), of which only a small amount is needed. The work comprised batch and semi-batch studies by H2O2, ultrasound studies of starch particles, determination of low-molecular by-products and determination of the decomposition kinetics of H2O2 in the presence of starch and the catalyst. This resulted in a waste-free oxidation method, which only produces water and oxygen as side products. The starch oxidation was studied in both semi-batch and batch modes in respective to the oxidant (H2O2) addition. The semi-batch mode proved to yield a sufficient degree of substitution (COOH groups) for industrial purposes. Treatment of starch granules by ultrasound was found to improve the reactivity of starch. The kinetic results were found out to have a rather complex pattern – several oxidation phases were observed, apparently due to the fact that the oxidation reaction in the beginning only took place on the surface, whereas after a prolonged reaction time, partial degradation of the solid starch granules allowed further reaction in the interior parts. Batch-mode experiments enabled a more detailed study of the mechanisms of starch in the presence of H2O2 and the catalyst, but yielded less oxidized starch due to rapid decomposition of H2O2 due to its high concentrations. The effect of the solid-liquid (S/L) ratio in the reaction system was studied in batch experiments. These studies revealed that the presence of the catalyst and the starch enhance the H2O2 decomposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known already from 1970´s that laser beam is suitable for processing paper materials. In this thesis, term paper materials mean all wood-fibre based materials, like dried pulp, copy paper, newspaper, cardboard, corrugated board, tissue paper etc. Accordingly, laser processing in this thesis means all laser treatments resulting material removal, like cutting, partial cutting, marking, creasing, perforation etc. that can be used to process paper materials. Laser technology provides many advantages for processing of paper materials: non-contact method, freedom of processing geometry, reliable technology for non-stop production etc. Especially packaging industry is very promising area for laser processing applications. However, there are only few industrial laser processing applications worldwide even in beginning of 2010´s. One reason for small-scale use of lasers in paper material manufacturing is that there is a shortage of published research and scientific articles. Another problem, restraining the use of laser for processing of paper materials, is colouration of paper material i.e. the yellowish and/or greyish colour of cut edge appearing during cutting or after cutting. These are the main reasons for selecting the topic of this thesis to concern characterization of interaction of laser beam and paper materials. This study was carried out in Laboratory of Laser Processing at Lappeenranta University of Technology (Finland). Laser equipment used in this study was TRUMPF TLF 2700 carbon dioxide laser that produces a beam with wavelength of 10.6 μm with power range of 190-2500 W (laser power on work piece). Study of laser beam and paper material interaction was carried out by treating dried kraft pulp (grammage of 67 g m-2) with different laser power levels, focal plane postion settings and interaction times. Interaction between laser beam and dried kraft pulp was detected with different monitoring devices, i.e. spectrometer, pyrometer and active illumination imaging system. This way it was possible to create an input and output parameter diagram and to study the effects of input and output parameters in this thesis. When interaction phenomena are understood also process development can be carried out and even new innovations developed. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. It was concluded in this thesis that interaction of laser beam and paper material has two mechanisms that are dependent on focal plane position range. Assumed interaction mechanism B appears in range of average focal plane position of 3.4 mm and 2.4 mm and assumed interaction mechanism A in range of average focal plane position of 0.4 mm and -0.6 mm both in used experimental set up. Focal plane position 1.4 mm represents midzone of these two mechanisms. Holes during laser beam and paper material interaction are formed gradually: first small hole is formed to interaction area in the centre of laser beam cross-section and after that, as function of interaction time, hole expands, until interaction between laser beam and dried kraft pulp is ended. By the image analysis it can be seen that in beginning of laser beam and dried kraft pulp material interaction small holes off very good quality are formed. It is obvious that black colour and heat affected zone appear as function of interaction time. This reveals that there still are different interaction phases within interaction mechanisms A and B. These interaction phases appear as function of time and also as function of peak intensity of laser beam. Limit peak intensity is the value that divides interaction mechanism A and B from one-phase interaction into dual-phase interaction. So all peak intensity values under limit peak intensity belong to MAOM (interaction mechanism A one-phase mode) or to MBOM (interaction mechanism B onephase mode) and values over that belong to MADM (interaction mechanism A dual-phase mode) or to MBDM (interaction mechanism B dual-phase mode). Decomposition process of cellulose is evolution of hydrocarbons when temperature is between 380- 500°C. This means that long cellulose molecule is split into smaller volatile hydrocarbons in this temperature range. As temperature increases, decomposition process of cellulose molecule changes. In range of 700-900°C, cellulose molecule is mainly decomposed into H2 gas; this is why this range is called evolution of hydrogen. Interaction in this range starts (as in range of MAOM and MBOM), when a small good quality hole is formed. This is due to “direct evaporation” of pulp via decomposition process of evolution of hydrogen. And this can be seen can be seen in spectrometer as high intensity peak of yellow light (in range of 588-589 nm) which refers to temperature of ~1750ºC. Pyrometer does not detect this high intensity peak since it is not able to detect physical phase change from solid kraft pulp to gaseous compounds. As interaction time between laser beam and dried kraft pulp continues, hypothesis is that three auto ignition processes occurs. Auto ignition of substance is the lowest temperature in which it will spontaneously ignite in a normal atmosphere without an external source of ignition, such as a flame or spark. Three auto ignition processes appears in range of MADM and MBDM, namely: 1. temperature of auto ignition of hydrogen atom (H2) is 500ºC, 2. temperature of auto ignition of carbon monoxide molecule (CO) is 609ºC and 3. temperature of auto ignition of carbon atom (C) is 700ºC. These three auto ignition processes leads to formation of plasma plume which has strong emission of radiation in range of visible light. Formation of this plasma plume can be seen as increase of intensity in wavelength range of ~475-652 nm. Pyrometer shows maximum temperature just after this ignition. This plasma plume is assumed to scatter laser beam so that it interacts with larger area of dried kraft pulp than what is actual area of beam cross-section. This assumed scattering reduces also peak intensity. So result shows that assumably scattered light with low peak intensity is interacting with large area of hole edges and due to low peak intensity this interaction happens in low temperature. So interaction between laser beam and dried kraft pulp turns from evolution of hydrogen to evolution of hydrocarbons. This leads to black colour of hole edges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the Brazilian Health Ministry and the World Health Organization have supported research into new technologies that may contribute to the surveillance, new treatments, and control of visceral leishmaniasis within the country. In light of this, the aim of this study was to isolate compounds from plants of the Caatinga biome, and to investigate their toxicity against promastigote and amastigote forms of Leishmania infantum chagasi, the main responsible parasite for South American visceral leishmaniasis, and evaluate their ability to inhibit acetylcholinesterase enzyme (AChE). A screen assay using luciferase-expressing promastigote form and an in situ ELISA assay were used to measure the viability of promastigote and amastigote forms, respectively, after exposure to these substances. The MTT colorimetric assay was performed to determine the toxicity of these compounds in murine monocytic RAW 264.7 cell line. All compounds were tested in vitro for their anti-cholinesterase properties. A coumarin, scoparone, was isolated from Platymiscium floribundum stems, and the flavonoids rutin and quercetin were isolated from Dimorphandra gardneriana beans. These compounds were purified using silica gel column chromatography, eluted with organic solvents in mixtures of increasing polarity, and identified by spectral analysis. In the leishmanicidal assays, the compounds showed dose-dependent efficacy against the extracellular promastigote forms, with an EC50 for scoporone of 21.4µg/mL, quercetin and rutin 26 and 30.3µg/mL, respectively. The flavonoids presented comparable results to the positive control drug, amphotericin B, against the amastigote forms with EC50 for quercetin and rutin of 10.6 and 43.3µg/mL, respectively. All compounds inhibited AChE with inhibition zones varying from 0.8 to 0.6, indicating a possible mechanism of action for leishmacicidal activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today the limitedness of fossil fuel resources is clearly realized. For this reason there is a strong focus throughout the world on shifting from fossil fuel based energy system to biofuel based energy system. In this respect Finland with its proven excellent forestry capabilities has a great potential to accomplish this goal. It is regarded that one of the most efficient ways of wood biomass utilization is to use it as a feedstock for fast pyrolysis process. By means of this process solid biomass is converted into liquid fuel called bio-oil which can be burnt at power plants, used for hydrogen generation through a catalytic steam reforming process and as a source of valuable chemical compounds. Nowadays different configurations of this process have found their applications in several pilot plants worldwide. However the circulating fluidized bed configuration is regarded as the one with the highest potential to be commercialized. In the current Master’s Thesis a feasibility study of circulating fluidized bed fast pyrolysis process utilizing Scots pine logs as a raw material was conducted. The production capacity of the process is 100 000 tonne/year of bio-oil. The feasibility study is divided into two phases: a process design phase and economic feasibility analysis phase. The process design phase consists of mass and heat balance calculations, equipment sizing, estimation of pressure drops in the pipelines and development of plant layout. This phase resulted in creation of process flow diagrams, equipment list and Microsoft Excel spreadsheet that calculates the process mass and heat balances depending on the bio-oil production capacity which can be set by a user. These documents are presented in the current report as appendices. In the economic feasibility analysis phase there were at first calculated investment and operating costs of the process. Then using these costs there was calculated the price of bio-oil which is required to reach the values of internal rate of return of 5%, 10%, 20%, 30%, 40%, and 50%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kandidaatintyön johdantokappaleessa esitellään vetyperoksidi ja mihin sitä käytetään teollisuudessa. Työssä vertaillaan antrakinoniprosessia ja suoraa prosessia sekä selvitetään nykyisin enemmän vetyperoksidituotantoon käytetyn antrakinoniprosessin ongelmakohdat ja osoitetaan, miksi suora synteesi vetyperoksidin tuotannossa olisi parempi vaihtoehto. Kandidaatintyön käsittelee suurilta osin turvallisuusongelmia, joita esiintyy suoran synteesin yhteydessä. Kirjallisuudesta on etsitty ratkaisuja näihin ongelmiin, kuten membraaniprosessin käyttöä räjähdysvaaran välttämiseksi. Pienemmän reaktorin eli ns. mikroreaktorin käyttö tuo mukanaan monia etuja vetyperoksidin tuotantoon. Tällöin prosessi on turvallisempi ja sitä on helpompi hallita. Mikroreaktorissa voidaan käyttää korkeampia lämpötiloja ja paineita kuin makroreaktorilla ilman, että räjähdysvaara prosessissa kasvaisi. Mikroreaktorin sisällä olevat mikrokanavat luovat turvallisen ympäristön synteesille. Aspen plus – simulointiohjelmalla mallinnettiin ja simulointiin suoran prosessin kriittisiä virtoja mikroreaktorissa. Tarkoituksena oli löytää virrat, joissa kulkee mahdollisesti räjähtävä kaasuseos. Kaasumaiset prosessivirrat ovat kriittisimmät vetyperoksidin suorassa synteesissä, koska ne aiheuttavat todennäköisemmin räjähdyksen kuin nestemäiset prosessivirrat. Kaikkein eniten prosessiturvallisuutta uhkaavat ainevirrat ennen ja jälkeen mikroreaktoria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present paper is to study the relationship between the fracture modes in hydrogen-assisted cracking (HAC) in microalloied steel and the emission of acoustic signals during the fracturing process. For this reason, a flux-cored arc weld (FCAW) was used in a high-strength low-alloy steel. The consumable used were the commercially available AWS E120T5-K4 and had a diameter of 1.6 mm. Two different shielding gases were used (CO2 and CO2+5% H2) to obtain complete phenomenon characterization. The implant test was applied with three levels of restriction stresses. An acoustic emission measurement system (AEMS) was coupled to the implant test apparatus. The output signal from the acoustic emission sensor was passed through an electronic amplifier and processed by a root mean square (RMS) voltage converter. Fracture surfaces were examined by scanning electron microscopy (SEM) and image analysis. Fracture modes were related with the intensity, the energy and the number of the peaks of the acoustic emission signal. The shielding gas CO2+5% H2 proved to be very useful in the experiments. Basically, three different fracture modes were identified in terms of fracture appearance: microvoid coalescence (MVC), intergranular (IG) and quasi-cleavage (QC). The results show that each mode of fracture presents a characteristic acoustic signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of flux cored arc welding (FCAW) has increased in manufacturing and fabrication. Even though FCAW is well known for its good capability in producing quality welds, few reports have been published on the cause of the relatively high diffusible hydrogen content in the weld metal and its relation with the ingredients used in the wire production and with the welding parameters (mainly welding current). This paper describes experiments where data obtained from weld metal diffusible hydrogen analysis, metal droplet collection, and high-speed recording of metal droplet transfer were used to evaluate the effect of welding current on diffusible hydrogen content in the weld metal. The results from gas chromatography analysis showed that weld metal hydrogen content indeed increased with welding current. A polynomial regressional analysis concluded that hydrogen increase with current was better described by a linear function with proportional constant of approximately 0.7 or 70%. Different from the GMA welding transfer behavior, statistical analysis showed only a small increase in metal droplet size with increasing current. The metal transfer mode remained in the globular range for currents between 100 and 150 A. The most surprising findings were with the high-speed cinematography recording. Observing the high speed movies, it was possible to see that at low current, "unmelted" flux sporadically touched the weld pool but at higher current, the flux remained touching the weld pool during the whole time of droplet formation and transfer. It is believed that since the flux has ingredients that contain hydrogen, hydrogen passes through the arc undisturbed, going to the weld bead intact and increasing the hydrogen content in the weld metal. Another important observation is regarding to droplet size. Droplet size increased with increasing current because forces from decomposed gases from the flux could sustain the droplets, retarding their transfer and allowing them to grow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microreactors have proven to be versatile tools for process intensification. Over recent decades, they have increasingly been used for product and process development in chemical industries. Enhanced heat and mass transfer in the reactors due to the extremely high surfacearea- to-volume ratio and interfacial area allow chemical processes to be operated at extreme conditions. Safety is improved by the small holdup volume of the reactors and effective control of pressure and temperature. Hydrogen peroxide is a powerful green oxidant that is used in a wide range of industries. Reduction and auto-oxidation of anthraquinones is currently the main process for hydrogen peroxide production. Direct synthesis is a green alternative and has potential for on-site production. However, there are two limitations: safety concerns because of the explosive gas mixture produced and low selectivity of the process. The aim of this thesis was to develop a process for direct synthesis of hydrogen peroxide utilizing microreactor technology. Experimental and numerical approaches were applied for development of the microreactor. Development of a novel microreactor was commenced by studying the hydrodynamics and mass transfer in prototype microreactor plates. The prototypes were designed and fabricated with the assistance of CFD modeling to optimize the shape and size of the microstructure. Empirical correlations for the mass transfer coefficient were derived. The pressure drop in micro T-mixers was investigated experimentally and numerically. Correlations describing the friction factor for different flow regimes were developed and predicted values were in good agreement with experimental results. Experimental studies were conducted to develop a highly active and selective catalyst with a proper form for the microreactor. Pd catalysts supported on activated carbon cloths were prepared by different treatments during the catalyst preparation. A variety of characterization methods were used for catalyst investigation. The surface chemistry of the support and the oxidation state of the metallic phase in the catalyst play important roles in catalyst activity and selectivity for the direct synthesis. The direct synthesis of hydrogen peroxide was investigated in a bench-scale continuous process using the novel microreactor developed. The microreactor was fabricated based on the hydrodynamic and mass transfer studies and provided a high interfacial area and high mass transfer coefficient. The catalysts were prepared under optimum treatment conditions. The direct synthesis was conducted at various conditions. The thesis represents a step towards a commercially viable direct synthesis. The focus is on the two main challenges: mitigating the safety problem by utilization of microprocess technology and improving the selectivity by catalyst development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of our society is impossible without a constant progress in life-important areas such as chemical engineering and technology. Innovation, creativity and technology are three main components driving the progress of chemistry further towards a sustainable society. Biomass, being an attractive renewable feedstock for production of fine chemicals, energy-rich materials and even transportation fuels, captures progressively new positions in the area of chemical technology. Knowledge of heterogeneous catalysis and chemical technology applied to transformation of biomass-derived substances will open doors for a sustainable economy and facilitates the discovery of novel environmentally-benign processes which probably will replace existing technologies in the era of biorefinary. Aqueous-phase reforming (APR) is regarded as a promising technology for production of hydrogen and liquids fuels from biomass-derived substances such as C3-C6 polyols. In the present work, aqueous-phase reforming of glycerol, xylitol and sorbitol was investigated in the presence of supported Pt catalysts. The catalysts were deposited on different support materials, including Al2O3, TiO2 and carbons. Catalytic measurements were performed in a laboratory-scale continuous fixedbed reactor. An advanced analytical approach was developed in order to identify reaction products and reaction intermediates in the APR of polyols. The influence of the substrate structure on the product formation and selectivity in the APR reaction was also investigated, showing that the yields of the desired products varied depending on the substrate chain length. Additionally, the influence of bioethanol additive in the APR of glycerol and sorbitol was studied. A reaction network was advanced explaining the formation of products and key intermediates. The structure sensitivity in the aqueous-phase reforming reaction was demonstrated using a series of platinum catalysts supported on carbon with different Pt cluster sizes in the continuous fixed-bed reactor. Furthermore, a correlation between texture physico-chemical properties of the catalysts and catalytic data was established. The effect of the second metal (Re, Cu) addition to Pt catalysts was investigated in the APR of xylitol showing a superior hydrocarbon formation on PtRe bimetallic catalysts compared to monometallic Pt. On the basis of the experimental data obtained, mathematical modeling of the reaction kinetics was performed. The developed model was proven to successfully describe experimental data on APR of sorbitol with good accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilization of biomass-based raw materials for the production of chemicals and materials is gaining an increasing interest. Due to the complex nature of biomass, a major challenge in its refining is the development of efficient fractionation and purification processes. Preparative chromatography and membrane filtration are selective, energy-efficient separation techniques which offer a great potential for biorefinery applications. Both of these techniques have been widely studied. On the other hand, only few process concepts that combine the two methods have been presented in the literature. The aim of this thesis was to find the possible synergetic effects provided by combining chromatographic and membrane separations, with a particular interest in biorefinery separation processes. Such knowledge could be used in the development of new, more efficient separation processes for isolating valuable compounds from complex feed solutions that are typical for the biorefinery environment. Separation techniques can be combined in various ways, from simple sequential coupling arrangements to fully-integrated hybrid processes. In this work, different types of combined separation processes as well as conventional chromatographic separation processes were studied for separating small molecules such as sugars and acids from biomass hydrolysates and spent pulping liquors. The combination of chromatographic and membrane separation was found capable of recovering high-purity products from complex solutions. For example, hydroxy acids of black liquor were successfully recovered using a novel multistep process based on ultrafiltration and size-exclusion chromatography. Unlike any other separation process earlier suggested for this challenging separation task, the new process concept does not require acidification pretreatment, and thus it could be more readily integrated into a pulp-mill biorefinery. In addition to the combined separation processes, steady-state recycling chromatography, which has earlier been studied for small-scale separations of high-value compounds only, was found a promising process alternative for biorefinery applications. In comparison to conventional batch chromatography, recycling chromatography provided higher product purity, increased the production rate and reduced the chemical consumption in the separation of monosaccharides from biomass hydrolysates. In addition, a significant further improvement in the process performance was obtained when a membrane filtration unit was integrated with recycling chromatography. In the light of the results of this work, separation processes based on combining membrane and chromatographic separations could be effectively applied for different biorefinery applications. The main challenge remains in the development of inexpensive separation materials which are resistant towards harsh process conditions and fouling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämän kandidaatintyön tarkoituksena oli tutkia märkähapetusprosessia jätevesien käsittely-menetelmänä ja mahdollisena menetelmänä kemikaalien tuottamiseksi jätevesistä. Erityishuomio on kiinnitetty paperiteollisuudessa syntyviin jätevesiin. Teoriaosassa käsitellään vesikiertoja paperitehtaassa, paperitehtaalla syntyvän jäteveden ominaisuuksia sekä itse märkähapetusprosessia. Märkähapetusprosessissa perehdytään tavalliseen happea käyttävään märkähapetukseen sekä vetyperoksidia käyttävään menetelmään sekä näissä prosesseissa syntyviin väli- ja lopputuotteisiin. Märkähapetus (WO) on terminen hapetusmenetelmä, jolla voidaan käsitellä jätevesiä, jotka ovat liian konsentroituja biologisiin käsittelyihin tai jotka ovat huonosti biohajoavia. Märkähapetuksen tarkoituksena on parantaa molekulaarisen hapen ja orgaanisen aineen välistä kontaktia, jolloin orgaaninen aines pilkkoutuu muodostaen pääasiassa karboksyylihappoja, aldehydejä, hiilidioksidia ja vettä. Märkähapetuksessa hapettavana kaasuna voidaan käyttää joko puhdasta happea tai ilmaa. Vetyperoksidia käyttävässä märkähapetuksessa (WPO) hapettava kaasu on korvattu nestemäisellä vetyperoksidilla. Kokeellisessa osassa tutkittiin orgaanisen aineksen hapetusta käyttäen Fentonin reagenssia, jolloin katalyyttina reaktiossa toimii rautaionit (Fe2+ ja Fe3+) ja hapettimena vetyperoksidi. Hapetettavana jätevetenä käytettiin paperitehtaan hiomolta saatua kiertovettä, TMP-vettä. Hapetuskokeita tehtiin eri vetyperoksidin annoksilla ja katalyytin määrillä eri lämpötiloissa. Hapetuksen jälkeen näytteistä mitattiin kemiallinen hapenkulutus (COD), orgaanisen hiilen kokonaismäärä (TOC) sekä pH. Lisäksi näytteistä määritettiin nestekromatografilla (HPLC) tyypillisten välituotteiden, kuten oksaalihapon, muurahaishapon ja etikkahapon, määrät. Tehdyissä kokeissa COD-arvoja saatiin pienennettyä 50-88 % siten, että suodatetuissa näytteissä muutos oli suurempi kuin suodattamattomissa näytteissä. Lisäksi TOC-arvot laskivat 28-58 %. Tehdyissä kokeissa saatiin myös tuotettua välituotteina karboksyylihappoja, joista etikkahappoa ja oksaalihappoa tuotettiin suurimmat määrät. Myös muurahaishappoa ja meripihkahappoa saatiin tuotettua.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämä raportti on tehty osana Kymenlaakson ammattikorkeakoulun hallinnoiman NELIn (North European Logistics Institute) esiselvitystä vaarallisten aineiden tunnistamisesta konttiliikenteessä. Tässä Turun yliopiston merenkulkualan koulutus- ja tutkimuskeskuksen Kotkassa toimivan Merenkulun logistiikan tutkimus -yksikön tekemässä selvityk-sessä on tutkittu kansallista satamaliikenteen PortNet-järjestelmää hyödyntäen, mitä pakattuina kuljetettavia vaarallisia aineita ja kuinka suuria määriä Suomen satamissa käsitellään. PortNet-analyysin tulosten pohjalta tutkimuksessa on selvitetty Suomen satamissa eniten käsiteltyjen, pakattuina kuljetettavien vaarallisten aineiden vaaraominaisuuksia sekä ihmisten että ympäristön kannalta. Tutkimuksessa tehdyn PortNet-analyysin perusteella pakattuja vaarallisia aineita käsiteltiin 16:ssa Suomen satamassa vuonna 2012. Käsiteltyjen aineiden kokonaismäärä oli noin 820 000 tonnia, josta viennin osuus oli 53 % ja tuonnin 47 %. Eniten kuljetettuja IMDG-luokkia olivat luokan 3 palavat nesteet (31 %:n osuus), luokan 9 muut vaaralliset aineet ja esineet (25 %) sekä luokan 8 syövyttävät aineet (23 %). Muiden luokkien osuus oli alle 10 %. Suomen satamissa käsiteltiin vuonna 2012 yhteensä noin 1 020 eri-laista, pakattua vaarallista ainetta. Yli 10 000 tonnia käsiteltyjä aineita oli yhteensä 16, 1 000–10 000 tonnia käsiteltyjä aineita 84, 100–1 000 tonnia käsiteltyjä aineita 148 ja alle 100 tonnia käsiteltyjä aineita noin 770. Eniten käsiteltyjä aineita olivat pääasiassa erilaiset aineyhdisteet ja tarkemmin määrittelemättömät aineet, kuten ympäristölle vaarallinen aine n.o.s, maalit, polymeeripelletit, hartsiliuos, kohotetussa lämpötilassa oleva neste n.o.s. ja nikkelimetallihybridiakut. Näitä kaikkia käsiteltiin Suomen satamissa yli 20 000 tonnia vuonna 2012. Varsinaisista yksittäisistä vaarallisista aineista eniten käsiteltyjä olivat muurahaishappo, vetyperoksidin vesiliuos, natriumkloraatti, ammoniumnitraatti, fenoli ja kloorietikkahappoliuos. Näitä kaikkia käsiteltiin yli 10 000 tonnia vuonna 2012. PortNet-analyysin tulosten pohjalta valittiin kymmenen ainetta, joiden vaaraominaisuuksia sekä ihmisten että ympäristön kannalta tarkasteltiin tarkemmin. Tarkasteluun valittiin, tieteellistä harkintaa käyttäen, eniten kuljetettavia vaarallisia yksittäisiä kemikaaleja. Tarkasteluun valitut kemikaalit olivat muurahaishappo, vetyperoksidi, natrium-kloraatti, kloorietikkahappo, fenoli, akryyliamidiliuos, ksyleenit, akryylinitriili, tolueeni ja epikloorihydriini. Tutkituista kemikaaleista ympäristölle haitallisimpia ovat fenoli, kloorietikkahappo ja akryyliamidiliuos. Ihmisen kannalta kaikki 10 tutkittua kemikaalia muodostavat onnettomuustilanteessa riskin ihmisten terveydelle joko syövyttävyytensä, reaktiivisuutensa tai myrkyllisyytensä vuoksi. Osa kemikaaleista voi aiheuttaa ihmisille myös kroonisia haittoja, kuten kohonnutta syöpäriskiä tai muutoksia perimässä, joko suurina kerta-annoksina tai pieninä toistuvina pitoisuuksina. Suomen satamissa käsiteltävien pakattujen kemikaalien erilaisuus ja suuri lukumäärä tekevät niistä vaikeasti hallittavissa olevan riskitekijän. Yleisesti ottaen voidaan sanoa, että pakatuista kemikaaleista aiheutuu pienehköissä vuototilanteissa suurempi uhka ihmisen terveydelle kuin ympäristölle, kun taas irtolastikuljetuksissa tapahtuvien onnettomuuksien yhteydessä vuotaneen aineen määrä on yleensä suurempi ja näin ollen myös ympäristölle koituva uhka voi olla suuri.