964 resultados para Weighted sum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

IMAGES core MD01-2416 (51°N, 168°E) provides the first centennial-scale multiproxy record of Holocene variation in North Pacific sea-surface temperature (SST), salinity, and biogenic productivity. Our results reveal a gradual decrease in subarctic SST by 3-5 °C from 11.1 to 4.2 ka and a stepwise long-term decrease in sea surface salinity (SSS) by 2-3 p.s.u. Early Holocene SSS were as high as in the modern subtropical Pacific. The steep halocline and stratification that is characteristic of the present-day subarctic North Pacific surface ocean is a fairly recent feature, developed as a product of mid-Holocene environmental change. High SSS matched a salient productivity maximum of biogenic opal during Bølling-to-Early Holocene times, reaching levels similar to those observed during preglacial times in the warm mid-Pliocene prior to 2.73 Ma. Similar productivity spikes marked every preceding glacial termination of the last 800 ka, indicating recurrent short-term events of mid-Pliocene-style intense upwelling of nutrient-rich Pacific Deepwater in the Pleistocene. Such events led to a repeated exposure of CO2-rich deepwater at the ocean surface facilitating a transient CO2 release to the atmosphere, but the timing and duration of these events repudiate a long-term influence of the subarctic North Pacific on global atmospheric CO2 concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The timing and magnitude of sea-surface temperature (SST) changes in the tropical southern South China Sea (SCS) during the last 16,500 years have been reconstructed on a high-resolution, 14C-dated sediment core using three different foraminiferal transfer functions (SIMMAX28, RAM, FP-12E) and geochemical (Uk'37) SST estimates. In agreement with CLIMAP reconstructions, both the FP-12E and the Uk'37 SST estimates show an average late glacial-interglacial SST difference of 2.0°C, whereas the RAM and SIMMAX28 foraminiferal transfer functions show only a minor (0.6°C) or no consistent late glacial-interglacial SST change, respectively. Both the Uk'37 and the FP-12E SST estimates, as well as the planktonic foraminiferal delta18O values, indicate an abrupt warming (ca. 1°C in <200 yr) at the end of the last glaciation, synchronous (within dating uncertainties) with the Bølling transition as recorded in the Greenland Ice Sheet Project 2 (GISP2) ice core, whereas the RAM-derived deglacial SST increase appears to lag during this event by ca. 500 yr. The similarity in abruptness and timing of the warming associated with the Bølling transition in Greenland and the southern SCS suggest a true synchrony of the Northern Hemisphere warming at the end of the last glaciation. In contrast to the foraminiferal transfer function estimates that do not indicate any consistent cooling associated with the Younger Dryas (YD) climate event in the tropical SCS, the Uk'37 SST estimates show a cooling of ca. 0.2-0.6°C compared to the Bølling-Allerød period. These Uk'37 SST estimates from the southern SCS argue in favor of a Northern Hemisphere-wide, synchronous cooling during the YD period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used a novel system of three continuous wave Doppler radars to successfully record the directivity of i) Strombolian explosions from the active lava lake of Erebus volcano, Antarctica, ii) eruptions at Stromboli volcano, Italy, and iii) a man-made explosion in a quarry. Erebus volcano contains a convecting phonolite lava lake, presumably connected to a magma chamber at depth. It is one of the few open vent volcanoes that allow a direct observation of source processes during explosions. Its lava lake is the source of frequent violent Strombolian explosions, caused by large gas bubbles bursting at the lake surface. The exact mechanism of these bubble bursts is unclear, as is the mechanism of the creation of the infrasound signal accompanying the explosions. We use the Doppler radar data to calculate the directivity of Strombolian eruptions at Erebus. This allows us to derive information about the expected type of infrasound source pattern (i.e. the role of a dipole in addition to the monopole signature) and the physical structure of the volcano. We recorded 10 large explosions simultaneously with three radars, enabling us to calculate time series of 3D directivity vectors (i.e. effectively 4D), which describe the direction of preferred expansion of the gas bubble during an explosion. Such directivity information allows a comparison to dipole infrasound radiation patterns recorded during similar explosions only a few weeks later. Video observations of explosions support our interpretation of the measurements. We conclude that at Erebus, the directivity of explosions is mainly controlled by random processes. Since the geometry of the uppermost conduit is assumed to have a large effect on the directivity of explosions, the results suggest a largely symmetrical uppermost conduit with a vertical axis of symmetry. For infrasound recordings, a significant dipole signature can be expected in addition to the predominant monopole signature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paleotemperature estimates calculated by the SIMMAX Modern Analog Technique are presented for two gravity cores from the Rio Grande Rise, one from the Brazil Slope, and one from the Ceara Rise. The estimates are based on comparisons between modern and fossil planktonic foraminiferal assemblages and were carried out on samples from Quaternary sediments. Estimated warm-season temperatures from the Rio Grande Rise (at approx. 30° S) range from around 19°C to 24°C, with some coincidence of warm peaks with interglacial stages. The temperature estimates (also warm-season) from the more tropical Brazil Slope (at approx. 8° S) and Ceara Rise (at approx. 4° N) cores are more stable, remaining between 26°C and 28°C throughout most of their lengths. This fairly stable situation in the tropical western Atlantic is interrupted in oxygen isotope stage 6 by a significant drop of 2-3°C in both of these cores. Temperature estimates from the uppermost samples in all cores compare very well to the modern-day measured values. Affinities of some foraminiferal species for warmer or cooler surface temperatures are identified within the temperature range of the examined samples based on their abundance values. Especially notable among the warmer species are, Globorotalia menardii, Globigerinita glutinata, Globigerinoides ruber, and Globigerinoides sacculifer. Species indicative of cooler surface temperatures include Globorotalia inflata, Globigerina bulloides, Neogloboquadrina pachyderma, and Globigerina falconensis. A cluster analysis was carried out to assist in understanding the degree of variation which occurs in the foraminiferal assemblages, and how temperature differences influence the faunal compositions of the samples. It is demonstrated that fairly similar samples may have unexpectedly different estimated temperatures due to small differences in key species and, conversely, quite different assemblages can result in similar or identical temperature estimates which confirms that other parameters than just temperature affect faunal content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"August 20, 1965"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extra t.p. with thesis statement inserted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Typescript.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (M.S.)--University of Illinois at Urbana-Champaign.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photocopy. Springfield, Va. : Reproduced by National Technical Information Service, [197-]. -- 24O p. on 240 leaves.