Sea-surface temperature reconstructions for the Quaternary western Atlantic


Autoria(s): Hale, Walter; Pflaumann, Uwe
Cobertura

MEDIAN LATITUDE: -19.218723 * MEDIAN LONGITUDE: -26.575585 * SOUTH-BOUND LATITUDE: -31.666667 * WEST-BOUND LONGITUDE: -45.881667 * NORTH-BOUND LATITUDE: 3.831667 * EAST-BOUND LONGITUDE: 10.951717 * DATE/TIME START: 1988-02-20T00:00:00 * DATE/TIME END: 1996-03-01T00:00:00

Data(s)

18/07/1999

Resumo

Paleotemperature estimates calculated by the SIMMAX Modern Analog Technique are presented for two gravity cores from the Rio Grande Rise, one from the Brazil Slope, and one from the Ceara Rise. The estimates are based on comparisons between modern and fossil planktonic foraminiferal assemblages and were carried out on samples from Quaternary sediments. Estimated warm-season temperatures from the Rio Grande Rise (at approx. 30° S) range from around 19°C to 24°C, with some coincidence of warm peaks with interglacial stages. The temperature estimates (also warm-season) from the more tropical Brazil Slope (at approx. 8° S) and Ceara Rise (at approx. 4° N) cores are more stable, remaining between 26°C and 28°C throughout most of their lengths. This fairly stable situation in the tropical western Atlantic is interrupted in oxygen isotope stage 6 by a significant drop of 2-3°C in both of these cores. Temperature estimates from the uppermost samples in all cores compare very well to the modern-day measured values. Affinities of some foraminiferal species for warmer or cooler surface temperatures are identified within the temperature range of the examined samples based on their abundance values. Especially notable among the warmer species are, Globorotalia menardii, Globigerinita glutinata, Globigerinoides ruber, and Globigerinoides sacculifer. Species indicative of cooler surface temperatures include Globorotalia inflata, Globigerina bulloides, Neogloboquadrina pachyderma, and Globigerina falconensis. A cluster analysis was carried out to assist in understanding the degree of variation which occurs in the foraminiferal assemblages, and how temperature differences influence the faunal compositions of the samples. It is demonstrated that fairly similar samples may have unexpectedly different estimated temperatures due to small differences in key species and, conversely, quite different assemblages can result in similar or identical temperature estimates which confirms that other parameters than just temperature affect faunal content.

Formato

application/zip, 17 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.701452

doi:10.1594/PANGAEA.701452

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Hale, Walter; Pflaumann, Uwe (1999): Sea-surface Temperature Estimations using a Modern Analog Technique with Foraminiferal Assemblages from Western Atlantic Quaternary Sediments. In: Fischer, G & Wefer, G (eds.), Use of Proxies in Paleoceanography - Examples from the South Atlantic, Springer, Berlin, Heidelberg, 69-90

Palavras-Chave #06MT15_2; Amazon Fan; Angola Basin; Argentine Basin; Brazil Basin; C. nitida; C. wuellerstorfi d13C; C. wuellerstorfi d18O; Candeina nitida; Cibicidoides wuellerstorfi, d13C; Cibicidoides wuellerstorfi, d18O; Counting >150 µm fraction; Depth; DEPTH, sediment/rock; Eastern Rio Grande Rise; Equatorial Atlantic; Foraminifera, planktic; Foram plankt; G. bulloides; G. calida; G. conglobatus; G. crassaformis; G. digitata; G. dutertrei; G. falconensis; G. glutinata; G. hirsuta; G. inflata; G. menardii; G. menardii flexuosa; G. ruber; G. ruber p d13C; G. ruber p d18O; G. ruber w d13C; G. ruber w d18O; G. rubescens; G. sacculifer; G. scitula; G. siphonifera; G. tenella; G. truncatulinoides d; G. truncatulinoides s; G. tumida; G. ungulata; GeoB1007-4; GeoB1105-4; GeoB1309-2; GeoB1312-2; GeoB1523-1; GeoB1701-4; GeoB2109-1; GeoB2204-2; GeoB2819-1; GeoB3808-6; Globigerina bulloides; Globigerina calida; Globigerina digitata; Globigerina falconensis; Globigerinella siphonifera; Globigerinita glutinata; Globigerinoides conglobatus; Globigerinoides ruber; Globigerinoides ruber pink, d13C; Globigerinoides ruber pink, d18O; Globigerinoides ruber white, d13C; Globigerinoides ruber white, d18O; Globigerinoides sacculifer; Globoquadrina dutertrei; Globorotalia crassaformis; Globorotalia hirsuta; Globorotalia inflata; Globorotalia menardii; Globorotalia menardii flexuosa; Globorotalia scitula; Globorotalia truncatulinoides dextral; Globorotalia truncatulinoides sinistral; Globorotalia tumida; Globorotalia ungulata; Globoturborotalita rubescens; Globoturborotalita tenella; Gravity corer (Kiel type); H. pelagica; Hastigerina pelagica; M15/2; M16/2; M20/2; M23/2; M23/3; M29/2; M34/3; M6/6; M9/4; Mass spectrometer Finnigan MAT 251; Mass spectrometer Finnigan MAT 252; Meteor (1986); Mid Atlantic Ridge; Modern analog technique (MAT), SIMMAX28; Modern analog technique (MAT), SIMMAX28, distance-weighted; Modern analog technique (MAT), SIMMAX28, non-distance-weighted; N. pachyderma d; N. pachyderma s; Neogloboquadrina pachyderma dextral; Neogloboquadrina pachyderma dextral and dutertrei integrade; Neogloboquadrina pachyderma sinistral; Niger Sediment Fan; O. universa; Orbulina universa; P/D int; P. obliquiloculata; Pulleniatina obliquiloculata; Rio Grande Rise; S. dehiscens; Sea surface temperature, summer; Sea surface temperature, summer, standard deviation; Sea surface temperature, summer max; Sea surface temperature, summer min; Sea surface temperature, winter; Sea surface temperature, winter, standard deviation; Sea surface temperature, winter max; Sea surface temperature, winter min; SFB261; Similarity; Similarity index; SL; South Atlantic in Late Quaternary: Reconstruction of Budget and Currents; Sphaeroidinella dehiscens; SST sum; SST sum max; SST sum min; SST sum std dev; SST win; SST win max; SST win min; SST win std dev; T. quinqueloba; Turborotalita quinqueloba
Tipo

Dataset