995 resultados para Underlying Tissue Pharmacokinetics
Resumo:
In a mode of nude mice bearing a human colon carcinoma xenograft, the biodistribution and tumor localization of metatetrahydroxyphenylchlorin (m-THPC) coupled to polyethylene glycol (PEG) were compared with those of the free form of this photosensitizer used in photodynamic therapy (PDT). At different times after i.v. injection of both forms of 125I-labeled photosensitizer, m-THPC-PEG gave on average a 2-fold higher tumor uptake than free m-THPC. In addition, at early times after injection, m-THPC-PEG showed a 2-fold longer blood circulating half-life and a 4-fold lower liver uptake than free m-THPC. The tumor to normal tissue ratios of radioactivity concentrations were always higher for m-THPC-PEG than for free m-THPC at any time point studied from 2 to 96 hr post-injection. Significant coefficients of correlation between direct fluorescence measurements and radioactivity counting were obtained within each organ tested. Fluorescence microscopy studies showed that m-THPC-PEG was preferentially localized near the tumor vessels, whereas m-THPC was more diffusely distributed inside the tumor tissue. To verify whether m-THPC-PEG conjugate remained phototoxic in vivo, PDT experiments were performed 72 hr after injection and showed that m-THPC-PEG was as potent as free m-THPC in the induction of tumor regression provided that the irradiation does for m-THPC-PEG conjugate was adapted to a well-tolerated 2-fold higher level. The overall results demonstrate first the possibility of improving the in vivo tumor localization of a hydrophobic dye used for PDT by coupling it to PEG and second that a photosensitizer conjugated to a macromolecule can remain phototoxic in vivo.
Resumo:
BACKGROUND Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT) and visceral (VAT) adipose tissue according to body mass index (BMI) and the degree of insulin resistance (IR). METHODS AND PRINCIPAL FINDINGS VLDL receptor (VLDLR), lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein 1 (LRP1) and fatty acid binding protein 4 (FABP4) gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT. CONCLUSIONS Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons.
Resumo:
OBJECTIVE
De novo lipogenesis is involved in fatty acid biosynthesis and could be involved in the regulation of the triglyceride storage capacity of adipose tissue. However, the association between lipogenic and lipolytic genes and the evolution of morbidly obese subjects after bariatric surgery remains unknown. In this prospective study we analyze the association between the improvement in the morbidly obese patients as a result of bariatric surgery and the basal expression of lipogenic and lipolytic genes.
METHODS
We study 23 non diabetic morbidly obese patients who were studied before and 7 months after bariatric surgery. Also, we analyze the relative basal mRNA expression levels of lipogenic and lipolytic genes in epiploic visceral adipose tissue (VAT) and abdominal subcutaneous adipose tissue (SAT).
RESULTS
When the basal acetyl-CoA carboxylase 1 (ACC1), acetyl-CoA synthetase 2 (ACSS2) and ATP citrate lyase (ACL) expression in SAT was below percentile-50, there was a greater decrease in weight (P = 0.006, P = 0.034, P = 0.026), body mass index (P = 0.008, P = 0.033, P = 0.034) and hip circumference (P = 0.033, P = 0.021, P = 0.083) after bariatric surgery. In VAT, when the basal ACSS2 expression was below percentile-50, there was a greater decrease in hip circumference (P = 0.006). After adjusting for confounding variables in logistic regression models, only the morbidly obese patients with SAT or VAT ACSS2 expression ≥ P50 before bariatric surgery had a lower percentage hip circumference loss (
Resumo:
CONTEXT Expression and activity of the main lipogenic enzymes is paradoxically decreased in obesity, but the mechanisms behind these findings are poorly known. Breast Cancer 1 (BrCa1) interacts with acetyl-CoA carboxylase (ACC) reducing the rate of fatty acid biosynthesis. In this study, we aimed to evaluate BrCa1 in human adipose tissue according to obesity and insulin resistance, and in vitro cultured adipocytes. RESEARCH DESIGN AND METHODS BrCa1 gene expression, total and phosphorylated (P-) BrCa1, and ACC were analyzed in adipose tissue samples obtained from a total sample of 133 subjects. BrCa1 expression was also evaluated during in vitro differentiation of human adipocytes and 3T3-L1 cells. RESULTS BrCa1 gene expression was significantly up-regulated in both omental (OM; 1.36-fold, p = 0.002) and subcutaneous (SC; 1.49-fold, p = 0.001) adipose tissue from obese subjects. In parallel with increased BrCa1 mRNA, P-ACC was also up-regulated in SC (p = 0.007) as well as in OM (p = 0.010) fat from obese subjects. Consistent with its role limiting fatty acid biosynthesis, both BrCa1 mRNA (3.5-fold, p<0.0001) and protein (1.2-fold, p = 0.001) were increased in pre-adipocytes, and decreased during in vitro adipogenesis, while P-ACC decreased during differentiation of human adipocytes (p = 0.005) allowing lipid biosynthesis. Interestingly, BrCa1 gene expression in mature adipocytes was restored by inflammatory stimuli (macrophage conditioned medium), whereas lipogenic genes significantly decreased. CONCLUSIONS The specular findings of BrCa1 and lipogenic enzymes in adipose tissue and adipocytes reported here suggest that BrCa1 might help to control fatty acid biosynthesis in adipocytes and adipose tissue from obese subjects.
Resumo:
Obesity is associated with a low-grade chronic inflammation state. As a consequence, adipose tissue expresses pro-inflammatory cytokines that propagate inflammatory responses systemically elsewhere, promoting whole-body insulin resistance and consequential islet β-cell exhaustation. Thus, insulin resistance is considered the early stage of type 2 diabetes. However, there is evidence of obese individuals that never develop diabetes indicating that the mechanisms governing the association between the increase of inflammatory factors and type 2 diabetes are much more complex and deserve further investigation. We studied for the first time the differences in insulin signalling and inflammatory pathways in blood and visceral adipose tissue (VAT) of 20 lean healthy donors and 40 equal morbidly obese (MO) patients classified in high insulin resistance (high IR) degree and diabetes state. We studied the changes in proinflammatory markers and lipid content from serum; macrophage infiltration, mRNA expression of inflammatory cytokines and transcription factors, activation of kinases involved in inflammation and expression of insulin signalling molecules in VAT. VAT comparison of these experimental groups revealed that type 2 diabetic-MO subjects exhibit the same pro-inflammatory profile than the high IR-MO patients, characterized by elevated levels of IL-1β, IL-6, TNFα, JNK1/2, ERK1/2, STAT3 and NFκB. Our work rules out the assumption that the inflammation should be increased in obese people with type 2 diabetes compared to high IR obese. These findings indicate that some mechanisms, other than systemic and VAT inflammation must be involved in the development of type 2 diabetes in obesity.
Resumo:
BACKGROUND FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile. OBJECTIVE In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed. METHODS The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot. RESULTS In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group. CONCLUSION The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity.
Resumo:
We have previously established that young male rats are more susceptible to the effects of Trypanosoma cruzi infection than adult rats. To explore underlying age-associated differences in disease outcome, we simultaneously assessed hormone levels and cytokine release throughout the acute infection period in young and adult rats infected with T. cruzi. Young rats were inoculated with 1 x 10(6) and adult rats with 7 x 10(6) blood trypomastigotes, according to their relative body weight. At zero, seven, 14, 21 and 28 days after infection, blood was collected for the determination of gonadal and adrenal hormones, tumor necrosis factor α (TNF-α), interleukin (IL)-10 and specific IgM and IgG subtypes. Young animals displayed significantly higher parasitaemia values and an endocrine pattern that was characterised by elevated values in corticosterone (CT) and the CT/dehydroepiandrosterone-sulfate ratio, which favours immunosuppression and susceptibility. In contrast, adult male rats were able to restrict the parasite burden, which likely resulted from increased IgG antibody synthesis and oestradiol levels. Adult rats also showed a reduced TNF-α/IL-10 ratio and less tissue damage. We conclude that young animals exhibited increased vulnerability to T. cruzi infection compared with adults and this is associated with an unsuitable immunoendocrine milieu.
Resumo:
BACKGROUND Adipose tissue is a key regulator of energy balance playing an active role in lipid storage and may be a dynamic buffer to control fatty acid flux. Just like PPARgamma, fatty acid synthesis enzymes such as FASN have been implicated in almost all aspects of human metabolic alterations such as obesity, insulin resistance or dyslipemia. The aim of this work is to investigate how FASN and PPARgamma expression in human adipose tissue is related to carbohydrate metabolism dysfunction and obesity. METHODS The study included eighty-seven patients which were classified according to their BMI and to their glycaemia levels in order to study FASN and PPARgamma gene expression levels, anthropometric and biochemical variables. RESULTS The main result of this work is the close relation between FASN expression level and the factors that lead to hyperglycemic state (increased values of glucose levels, HOMA-IR, HbA1c, BMI and triglycerides). The correlation of the enzyme with these parameters is inversely proportional. On the other hand, PPARgamma is not related to carbohydrate metabolism. CONCLUSIONS We can demonstrate that FASN expression is a good candidate to study the pathophysiology of type II diabetes and obesity in humans.
Resumo:
Temporo-mandibular joint disc disorders are highly prevalent in adult populations. Autologous chondrocyte implantation is a well-established method for the treatment of several chondral defects. However, very few studies have been carried out using human fibrous chondrocytes from the temporo-mandibular joint (TMJ). One of the main drawbacks associated to chondrocyte cell culture is the possibility that chondrocyte cells kept in culture tend to de-differentiate and to lose cell viability under in in-vitro conditions. In this work, we have isolated human temporo-mandibular joint fibrochondrocytes (TMJF) from human disc and we have used a highly-sensitive technique to determine cell viability, cell proliferation and gene expression of nine consecutive cell passages to determine the most appropriate cell passage for use in tissue engineering and future clinical use. Our results revealed that the most potentially viable and functional cell passages were P5-P6, in which an adequate equilibrium between cell viability and the capability to synthesize all major extracellular matrix components exists. The combined action of pro-apoptotic (TRAF5, PHLDA1) and anti-apoptotic genes (SON, HTT, FAIM2) may explain the differential cell viability levels that we found in this study. These results suggest that TMJF should be used at P5-P6 for cell therapy protocols.
Resumo:
OBJECTIVE: To evaluate the effect of a 4-day carbohydrate overfeeding on whole body net de novo lipogenesis and on markers of de novo lipogenesis in subcutaneous adipose tissue of healthy lean humans. RESEARCH METHODS AND PROCEDURES: Nine healthy lean volunteers (five men and four women) were studied after 4 days of either isocaloric feeding or carbohydrate overfeeding. On each occasion, they underwent a metabolic study during which their energy expenditure and net substrate oxidation rates (indirect calorimetry), and the fractional activity of the pentose-phosphate pathway in subcutaneous adipose tissue (subcutaneous microdialysis with 1,6(13)C2,6,6(2)H2 glucose) were assessed before and after administration of glucose. Adipose tissue biopsies were obtained at the end of the experiments to monitor mRNAs of key lipogenic enzymes. RESULTS: Carbohydrate overfeeding increased basal and postglucose energy expenditure and net carbohydrate oxidation. Whole body net de novo lipogenesis after glucose loading was markedly increased at the expense of glycogen synthesis. Carbohydrate overfeeding also increased mRNA levels for the key lipogenic enzymes sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase, and fatty acid synthase. The fractional activity of adipose tissue pentose-phosphate pathway was 17% to 22% and was not altered by carbohydrate overfeeding. DISCUSSION: Carbohydrate overfeeding markedly increased net de novo lipogenesis at the expense of glycogen synthesis. An increase in mRNAs coding for key lipogenic enzymes suggests that de novo lipogenesis occurred, at least in part, in adipose tissue. The pentose-phosphate pathway is active in adipose tissue of healthy humans, consistent with an active role of this tissue in de novo lipogenesis.
Resumo:
We present the uncommon case of a subcutaneous fascia-based extramedullary plasmacytoma in the leg, which was confirmed by the pathology report and followed up until its remission. We report the differential diagnosis with other more common soft tissue masses. Imaging findings are nonspecific but are important to determine the tumour extension and to plan the biopsy.
Resumo:
BACKGROUND The expansion of adipose tissue is linked to the development of its vasculature, which appears to have the potential to regulate the onset of obesity. However, at present, there are no studies highlighting the relationship between human adipose tissue angiogenesis and obesity-associated insulin resistance (IR). RESULTS Our aim was to analyze and compare angiogenic factor expression levels in both subcutaneous (SC) and omentum (OM) adipose tissues from morbidly obese patients (n = 26) with low (OB/L-IR) (healthy obese) and high (OB/H-IR) degrees of IR, and lean controls (n = 17). Another objective was to examine angiogenic factor correlations with obesity and IR.Here we found that VEGF-A was the isoform with higher expression in both OM and SC adipose tissues, and was up-regulated 3-fold, together with MMP9 in OB/L-IR as compared to leans. This up-regulation decreased by 23% in OB/-H-IR compared to OB/L-IR. On the contrary, VEGF-B, VEGF-C and VEGF-D, together with MMP15 was down-regulated in both OB/H-IR and OB/L-IR compared to lean patients. Moreover, MMP9 correlated positively and VEGF-C, VEGF-D and MMP15 correlated negatively with HOMA-IR, in both SC and OM. CONCLUSION We hereby propose that the alteration in MMP15, VEGF-B, VEGF-C and VEGF-D gene expression may be caused by one of the relevant adipose tissue processes related to the development of IR, and the up-regulation of VEGF-A in adipose tissue could have a relationship with the prevention of this pathology.
Resumo:
Neural crest cells (NCC) give rise to much of the tissue that forms the vertebrate head and face, including cartilage and bone, cranial ganglia and teeth. In this study we show that conditional expression of a dominant-negative (DN) form of Rho kinase (Rock) in mouse NCC results in severe hypoplasia of the frontonasal processes and first pharyngeal arch, ultimately resulting in reduction of the maxilla and nasal bones and severe craniofacial clefting affecting the nose, palate and lip. These defects resemble frontonasal dysplasia in humans. Disruption of the actin cytoskeleton, which leads to abnormalities in cell-matrix attachment, is seen in the RockDN;Wnt1-cre mutant embryos. This leads to elevated cell death, resulting in NCC deficiency and hypoplastic NCC-derived craniofacial structures. Rock is thus essential for survival of NCC that form the craniofacial region. We propose that reduced NCC numbers in the frontonasal processes and first pharyngeal arch, resulting from exacerbated cell death, may be the common mechanism underlying frontonasal dysplasia.
Resumo:
OBJECTIVE Zinc-α(2) glycoprotein (ZAG) stimulates lipid loss by adipocytes and may be involved in the regulation of adipose tissue metabolism. However, to date no studies have been made in the most extreme of obesity. The aims of this study are to analyze ZAG expression levels in adipose tissue from morbidly obese patients, and their relationship with lipogenic and lipolytic genes and with insulin resistance (IR). METHODS mRNA expression levels of PPARγ, IRS-1, IRS-2, lipogenic and lipolytic genes and ZAG were quantified in visceral (VAT) and subcutaneous adipose tissue (SAT) of 25 nondiabetic morbidly obese patients, 11 with low IR and 14 with high IR. Plasma ZAG was also analyzed. RESULTS The morbidly obese patients with low IR had a higher VAT ZAG expression as compared with the patients with high IR (p = 0.023). In the patients with low IR, the VAT ZAG expression was greater than that in SAT (p = 0.009). ZAG expression correlated between SAT and VAT (r = 0.709, p<0.001). VAT ZAG expression was mainly predicted by insulin, HOMA-IR, plasma adiponectin and expression of adiponectin and ACSS2. SAT ZAG expression was only predicted by expression of ATGL. CONCLUSIONS ZAG could be involved in modulating lipid metabolism in adipose tissue and is associated with insulin resistance. These findings suggest that ZAG may be a useful target in obesity and related disorders, such as diabetes.
Resumo:
At mucosal surfaces, secretory IgA (SIgA) antibodies serve as the first line of defense against microorganisms through a mechanism called immune exclusion that prevents interaction of neutralized antigens with the epithelium. In addition, SIgA plays a role in the immune balance of the epithelial barrier through selective adhesion to M cells in intestinal Peyer's patches. This mediates the transepithelial retro-transport of the antibody and associated antigens from the intestinal lumen to underlying gut-associated organized lymphoid tissue. In Peyer's patches, SIgA-based immune complexes are internalized by underlying antigen-presenting cells, leaving the antigen with masked epitopes, a form that limits the risk of overwhelming the local immune protection system with danger signals. This translates into the onset of mucosal and systemic responses associated with production of anti-inflammatory cytokines and limited activation of antigen-presenting cells. In the gastrointestinal tract, SIgA exhibits thus properties of a neutralizing agent (immune exclusion) and of an immunopotentiator inducing effector immune responses in a noninflammatory context favorable to preserve local homeostasis.