832 resultados para Slow tourism e storytelling dos residentes
Resumo:
We report on the formation of hydrogel monoliths formed by functionalized peptide Fmoc-RGD (Fmoc: fluorenylmethoxycarbonyl) containing the RGD cell adhesion tripeptide motif. The monolith is stable in water for nearly 40 days. The gel monoliths present a rigid porous structure consisting of a network of peptide fibers. The RGD-decorated peptide fibers have a β-sheet secondary structure. We prove that Fmoc-RGD monoliths can be used to release and encapsulate material, including model hydrophilic dyes and drug compounds. We provide the first insight into the correlation between the absorption and release kinetics of this new material and show that both processes take place over similar time scales.
Resumo:
Myostatin is a member of the transformating growth factor-_ (TGF-_) superfamily of proteins and is produced almost exclusively in skeletal muscle tissue, where it is secreted and circulates as a serum protein. Myostatin acts as a negative regulator of muscle mass through the canonical SMAD2/3/4 signaling pathway. Naturally occurring myostatin mutants exhibit a ‘double muscling’ phenotype in which muscle mass is dramatically increased as a result of both hypertrophy and hyperplasia. Myostatin is naturally inhibited by its own propeptide; therefore, we assessed the impact of adeno associated virus-8 (AAV8) myostatin propeptide vectors when systemically introduced in MF-1 mice. We noted a significant systemic increase in muscle mass in both slow and fast muscle phenotypes, with no evidence of hyperplasia; however, the nuclei-to- cytoplasm ratio in all myofiber types was significantly reduced. An increase in muscle mass in slow (soleus) muscle led to an increase in force output; however, an increase in fast (extensor digitorum longus [EDL]) muscle mass did not increase force output. These results suggest that the use of gene therapeutic regimens of myostatin inhibition for age-related or disease-related muscle loss may have muscle-specific effects.
Resumo:
This paper discusses the notion of ‘responsible tourism’ and its current use within the tourism literature. We argue that the concept as used currently means everything and therefore adds nothing to the conceptual terrain of tourism trends and nomenclatures. We then introduce our own understanding of the concept arguing that while responsible tourism is linked to sustainability initiatives such as alternative tourism, ecotourism, ethical tourism, green tourism, soft tourism, pro-poor tourism, geo-tourism, integrated tourism, community-based tourism, etc it also demarcates an analytical realm of its own. We suggest that the practical use of the term in areas where it has been adopted (such as South Africa and Kerala for instance) suggests a rather restricted use. We identified this realm as the tourism sector-specific manifestation of the corporate social responsibility (CSR) agenda. Following Flyvberg's [(2006). Five misunderstandings about case-study research. Qualitative Inquiry, 12(2), 219–245] call for exemplars and paradigmatic case studies to advance knowledge in a particular domain, the responsible tourism initiative in Kumarakon, Kerala, is presented. Discussion of the case study traces the particular governance context of Kerala and the position of tourism in the state economy. The responsible tourism initiatives at the state level and local level are then described highlighting the ‘how’ of the implementation and the impact that it has produced. Generic, non-prescriptive principles that could be said to be necessary in some form for the successful translation of responsible tourism principles to practices are then identified. Such an approach is contrasted with one that places faith in the voluntary adoption of ‘responsible’ practices by the private sector on its own. It is argued that responsible tourism can make a contribution to practice provided the conceptual terrain is delineated against other forms of tourism and if research within the terrain can unpack the particular forms of challenges that are thrown up by the delineation itself.
Resumo:
A parallel pipelined array of cells suitable for realtime computation of histograms is proposed. The cell architecture builds on previous work to now allow operating on a stream of data at 1 pixel per clock cycle. This new cell is more suitable for interfacing to camera sensors or to microprocessors of 8-bit data buses which are common in consumer digital cameras. Arrays using the new proposed cells are obtained via C-slow retiming techniques and can be clocked at a 65% faster frequency than previous arrays. This achieves over 80% of the performance of two-pixel per clock cycle parallel pipelined arrays.
Resumo:
The concept of slow vortical dynamics and its role in theoretical understanding is central to geophysical fluid dynamics. It leads, for example, to “potential vorticity thinking” (Hoskins et al. 1985). Mathematically, one imagines an invariant manifold within the phase space of solutions, called the slow manifold (Leith 1980; Lorenz 1980), to which the dynamics are constrained. Whether this slow manifold truly exists has been a major subject of inquiry over the past 20 years. It has become clear that an exact slow manifold is an exceptional case, restricted to steady or perhaps temporally periodic flows (Warn 1997). Thus the concept of a “fuzzy slow manifold” (Warn and Ménard 1986) has been suggested. The idea is that nearly slow dynamics will occur in a stochastic layer about the putative slow manifold. The natural question then is, how thick is this layer? In a recent paper, Ford et al. (2000) argue that Lighthill emission—the spontaneous emission of freely propagating acoustic waves by unsteady vortical flows—is applicable to the problem of balance, with the Mach number Ma replaced by the Froude number F, and that it is a fundamental mechanism for this fuzziness. They consider the rotating shallow-water equations and find emission of inertia–gravity waves at O(F2). This is rather surprising at first sight, because several studies of balanced dynamics with the rotating shallow-water equations have gone beyond second order in F, and found only an exponentially small unbalanced component (Warn and Ménard 1986; Lorenz and Krishnamurthy 1987; Bokhove and Shepherd 1996; Wirosoetisno and Shepherd 2000). We have no technical objection to the analysis of Ford et al. (2000), but wish to point out that it depends crucially on R 1, where R is the Rossby number. This condition requires the ratio of the characteristic length scale of the flow L to the Rossby deformation radius LR to go to zero in the limit F → 0. This is the low Froude number scaling of Charney (1963), which, while originally designed for the Tropics, has been argued to be also relevant to mesoscale dynamics (Riley et al. 1981). If L/LR is fixed, however, then F → 0 implies R → 0, which is the standard quasigeostrophic scaling of Charney (1948; see, e.g., Pedlosky 1987). In this limit there is reason to expect the fuzziness of the slow manifold to be “exponentially thin,” and balance to be much more accurate than is consistent with (algebraic) Lighthill emission.
Resumo:
Television’s long-form storytelling has the potential to allow the rippling of music across episodes and seasons in interesting ways. In the integration of narrative, music and meaning found in The O.C. (Fox, FOX 2003-7), popular song’s allusive and referential qualities are drawn upon to particularly televisual ends. At times embracing its ‘disruptive’ presence, at others suturing popular music into narrative, at times doing both at once. With television studies largely lacking theories of music, this chapter draws on film music theory and close textual analysis to analyse some of the programme's music moments in detail. In particular it considers the series-spanning use of Jeff Buckley’s cover of ‘Hallelujah’ (and its subsequent oppressive presence across multiple televisual texts), the end of episode musical montage and the use of recurring song fragments as theme within single episodes. In doing so it highlights music's role in the fragmentation and flow of the television aesthetic and popular song’s structural presence in television narrative. Illustrating the multiplicity of popular song’s use in television, these moments demonstrate song’s ability to provide narrative commentary, yet also make particular use of what Ian Garwood describes as the ability of ‘a non-diegetic song to exceed the emotional range displayed by diegetic characters’ (2003:115), to ‘speak’ for characters or to their feelings, contributing to both teen TV’s melodramatic affect and narrative expression.
Resumo:
A parallel pipelined array of cells suitable for real-time computation of histograms is proposed. The cell architecture builds on previous work obtained via C-slow retiming techniques and can be clocked at 65 percent faster frequency than previous arrays. The new arrays can be exploited for higher throughput particularly when dual data rate sampling techniques are used to operate on single streams of data from image sensors. In this way, the new cell operates on a p-bit data bus which is more convenient for interfacing to camera sensors or to microprocessors in consumer digital cameras.
Resumo:
The slow component of quartz OSL exhibits a high thermal stability, and, in many of the samples studied, a high dose saturation level (several hundreds or, even thousands, of Grays). These properties suggest that the slow component has potential as a long-range dating tool. Initial attempts have been made to obtain equivalent doses for a number of sedimentary samples. Single- and multiple-aliquot techniques were modified for use with the slow component. The results indicate that there is a good potential for sediment dating, particularly for samples of significant age. Experiments concerning the optical resetting of the slow component suggest that, given its slow optical depletion rate, dating may be restricted to aeolian sediments.
Resumo:
Historic environments and buildings are valued and valuable features of the UK tourism sector, as visitor attractions and as holiday accommodation. Keeping historic environments in economic use is crucial to their conservation, but they date from eras when access for disabled people was not a consideration. Part III of the Disability Discrimination Act 1995 (the DDA) took effect on 1 October 2004 and requires service providers to make reasonable building adjustments to remove physical barriers to disabled access. This independent scoping study by the College of Estate Management, sponsored by Marsh Limited and The Mercers' Company, explores progress in making historic environments accessible to disabled people through an examination of UK policy, literature and case studies in South Oxfordshire and London. The report findings are relevant for property and built environment professionals, business managers and all those involved with historic environments that are used for tourism.
Resumo:
Dipolar streamers are coronal structures formed by open solar flux converging from coronal holes of opposite polarity. Thus the dipolar streamer belt traces the coronal foot print of the heliospheric current sheet (HCS), and it is strongly associated with the origin of slow solar wind. Pseudostreamers, on the other hand, separate converging regions of open solar flux from coronal holes of the same polarity and do not contain current sheets. They have recently received a great deal of interest as a possible additional source of slow solar wind. Here we add to that growing body of work by using the potential-field source-surface model to determine the occurrence and location of dipolar and pseudostreamers over the last three solar cycles. In addition to providing new information about pseudostreamer morphology, the results help explain why the observations taken during the first Ulysses perihelion pass in 1995 showed noncoincidence between dipolar streamer belt and the locus of slowest flow. We find that Carrington rotation averages of the heliographic latitudes of dipolar and pseudostreamer belts are systematically shifted away from the equator, alternately in opposite directions, with a weak solar cycle periodicity, thus keeping slow wind from the web of combined streamer belts approximately symmetric about the equator. The largest separation of dipolar and pseudostreamer belts occurred close to the Ulysses pass, allowing a unique opportunity to see that slow wind from pseudostreamer belts north of the southward-displaced dipolar belt was responsible for the noncoincident pattern.