934 resultados para Satelites artificiais – Rotação
Resumo:
The microstrip antennas are in constant evidence in current researches due to several advantages that it presents. Fractal geometry coupled with good performance and convenience of the planar structures are an excellent combination for design and analysis of structures with ever smaller features and multi-resonant and broadband. This geometry has been applied in such patch microstrip antennas to reduce its size and highlight its multi-band behavior. Compared with the conventional microstrip antennas, the quasifractal patch antennas have lower frequencies of resonance, enabling the manufacture of more compact antennas. The aim of this work is the design of quasi-fractal patch antennas through the use of Koch and Minkowski fractal curves applied to radiating and nonradiating antenna s edges of conventional rectangular patch fed by microstrip inset-fed line, initially designed for the frequency of 2.45 GHz. The inset-fed technique is investigated for the impedance matching of fractal antennas, which are fed through lines of microstrip. The efficiency of this technique is investigated experimentally and compared with simulations carried out by commercial software Ansoft Designer used for precise analysis of the electromagnetic behavior of antennas by the method of moments and the neural model proposed. In this dissertation a study of literature on theory of microstrip antennas is done, the same study is performed on the fractal geometry, giving more emphasis to its various forms, techniques for generation of fractals and its applicability. This work also presents a study on artificial neural networks, showing the types/architecture of networks used and their characteristics as well as the training algorithms that were used for their implementation. The equations of settings of the parameters for networks used in this study were derived from the gradient method. It will also be carried out research with emphasis on miniaturization of the proposed new structures, showing how an antenna designed with contours fractals is capable of a miniaturized antenna conventional rectangular patch. The study also consists of a modeling through artificial neural networks of the various parameters of the electromagnetic near-fractal antennas. The presented results demonstrate the excellent capacity of modeling techniques for neural microstrip antennas and all algorithms used in this work in achieving the proposed models were implemented in commercial software simulation of Matlab 7. In order to validate the results, several prototypes of antennas were built, measured on a vector network analyzer and simulated in software for comparison
Resumo:
In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
In this dissertation new models of propagation path loss predictions are proposed by from techniques of optimization recent and measures of power levels for the urban and suburban areas of Natal, city of Brazilian northeast. These new proposed models are: (i) a statistical model that was implemented based in the addition of second-order statistics for the power and the altimetry of the relief in model of linear losses; (ii) a artificial neural networks model used the training of the algorithm backpropagation, in order to get the equation of propagation losses; (iii) a model based on the technique of the random walker, that considers the random of the absorption and the chaos of the environment and than its unknown parameters for the equation of propagation losses are determined through of a neural network. The digitalization of the relief for the urban and suburban areas of Natal were carried through of the development of specific computational programs and had been used available maps in the Statistics and Geography Brazilian Institute. The validations of the proposed propagation models had been carried through comparisons with measures and propagation classic models, and numerical good agreements were observed. These new considered models could be applied to any urban and suburban scenes with characteristic similar architectural to the city of Natal
Resumo:
abstract
Resumo:
ln this work, it was deveIoped a parallel cooperative genetic algorithm with different evolution behaviors to train and to define architectures for MuItiIayer Perceptron neural networks. MuItiIayer Perceptron neural networks are very powerful tools and had their use extended vastIy due to their abiIity of providing great resuIts to a broad range of appIications. The combination of genetic algorithms and parallel processing can be very powerful when applied to the Iearning process of the neural network, as well as to the definition of its architecture since this procedure can be very slow, usually requiring a lot of computational time. AIso, research work combining and appIying evolutionary computation into the design of neural networks is very useful since most of the Iearning algorithms deveIoped to train neural networks only adjust their synaptic weights, not considering the design of the networks architecture. Furthermore, the use of cooperation in the genetic algorithm allows the interaction of different populations, avoiding local minima and helping in the search of a promising solution, acceIerating the evolutionary process. Finally, individuaIs and evolution behavior can be exclusive on each copy of the genetic algorithm running in each task enhancing the diversity of populations
Resumo:
This work presents the development of a prototype of an intelligent active orthosis for lower limbs whit an electronic embedded system. The proposed orthosis is an orthopedical device with the main objective of providing walking capacity to people with partial or total loss of lower limbs movements. In order to design the kinematics, dynamics and the mechanical characteristics of the prototype, the biomechanics of the human body was analized. The orthosis was projected to reproduce some of the movements of the human gait as walking in straight forward, sit down, get up, arise and go down steps. The joints of the orthosis are controlled by DC motors equipped with mechanical reductions, whose purpose is to reduce rotational speed and increase the torque, thus generating smooth movements. The electronic embedded system is composed of two motor controller boards with two channels that communicate with a embedded PC, position sensors and limit switches. The gait movements of the orthosis will be controlled by high level commands from a human-machine interface. The embedded electronic system interprets the high level commands, generates the angular references for the joints of the orthosis, controls and drives the actuators in order to execute the desired movements of the user
Resumo:
O babaçu é uma planta de importância capital na economia de subsistência do norte do Brasil. Sua configuração sócio-ambiental o torna destaque na situação regional amazônica, onde os produtos advindos do babaçu possibilitam renda para a camada mais pobre da população amazônica, além da questão ambiental que é conotada à preservação dos babaçuais naturais. Um dos gargalos técnicos da produção do babaçu, em especial visando a extração do óleo de babaçu, é a colheita feita de forma manual e no sistema extrativista. O objetivo deste trabalho é propor o conceito de uma colhedora de babaçu moto-mecanizada, capaz de trabalhar em cultivos artificiais, assim como em florestas naturais. Foi utilizada a metodologia de projeto da matriz morfológica, onde foram elencadas as possíveis combinações de mecanismos e elementos para uma colhedora de babaçu. Como resultado foi obtido um conceito teórico, sendo concluída a viabilidade técnica de tal projeto, em estudos futuros pretende-se desenvolver estudos de viabilidade técnica detalhados, assim como estudos de viabilidade econômica.
Resumo:
This study shows the implementation and the embedding of an Artificial Neural Network (ANN) in hardware, or in a programmable device, as a field programmable gate array (FPGA). This work allowed the exploration of different implementations, described in VHDL, of multilayer perceptrons ANN. Due to the parallelism inherent to ANNs, there are disadvantages in software implementations due to the sequential nature of the Von Neumann architectures. As an alternative to this problem, there is a hardware implementation that allows to exploit all the parallelism implicit in this model. Currently, there is an increase in use of FPGAs as a platform to implement neural networks in hardware, exploiting the high processing power, low cost, ease of programming and ability to reconfigure the circuit, allowing the network to adapt to different applications. Given this context, the aim is to develop arrays of neural networks in hardware, a flexible architecture, in which it is possible to add or remove neurons, and mainly, modify the network topology, in order to enable a modular network of fixed-point arithmetic in a FPGA. Five synthesis of VHDL descriptions were produced: two for the neuron with one or two entrances, and three different architectures of ANN. The descriptions of the used architectures became very modular, easily allowing the increase or decrease of the number of neurons. As a result, some complete neural networks were implemented in FPGA, in fixed-point arithmetic, with a high-capacity parallel processing
Resumo:
This work presents a diagnosis faults system (rotor, stator, and contamination) of three-phase induction motor through equivalent circuit parameters and using techniques patterns recognition. The technology fault diagnostics in engines are evolving and becoming increasingly important in the field of electrical machinery. The neural networks have the ability to classify non-linear relationships between signals through the patterns identification of signals related. It is carried out induction motor´s simulations through the program Matlab R & Simulink R , and produced some faults from modifications in the equivalent circuit parameters. A system is implemented with multiples classifying neural network two neural networks to receive these results and, after well-trained, to accomplish the identification of fault´s pattern
Resumo:
This work consists in the use of techniques of signals processing and artificial neural networks to identify leaks in pipes with multiphase flow. In the traditional methods of leak detection exists a great difficulty to mount a profile, that is adjusted to the found in real conditions of the oil transport. These difficult conditions go since the unevenly soil that cause columns or vacuum throughout pipelines until the presence of multiphases like water, gas and oil; plus other components as sand, which use to produce discontinuous flow off and diverse variations. To attenuate these difficulties, the transform wavelet was used to map the signal pressure in different resolution plan allowing the extraction of descriptors that identify leaks patterns and with then to provide training for the neural network to learning of how to classify this pattern and report whenever this characterize leaks. During the tests were used transient and regime signals and pipelines with punctures with size variations from ½' to 1' of diameter to simulate leaks and between Upanema and Estreito B, of the UN-RNCE of the Petrobras, where it was possible to detect leaks. The results show that the proposed descriptors considered, based in statistical methods applied in domain transform, are sufficient to identify leaks patterns and make it possible to train the neural classifier to indicate the occurrence of pipeline leaks
Resumo:
A neuro-fuzzy system consists of two or more control techniques in only one structure. The main characteristic of this structure is joining one or more good aspects from each technique to make a hybrid controller. This controller can be based in Fuzzy systems, artificial Neural Networks, Genetics Algorithms or rein forced learning techniques. Neuro-fuzzy systems have been shown as a promising technique in industrial applications. Two models of neuro-fuzzy systems were developed, an ANFIS model and a NEFCON model. Both models were applied to control a ball and beam system and they had their results and needed changes commented. Choose of inputs to controllers and the algorithms used to learning, among other information about the hybrid systems, were commented. The results show the changes in structure after learning and the conditions to use each one controller based on theirs characteristics
Resumo:
This work aims to predict the total maximum demand of a transformer that will be used in power systems to attend a Multiple Unit Consumption (MUC) in design. In 1987, COSERN noted that calculation of maximum total demand for a building should be different from that which defines the scaling of the input protection extension in order to not overestimate the power of the transformer. Since then there have been many changes, both in consumption habits of the population, as in electrical appliances, so that this work will endeavor to improve the estimation of peak demand. For the survey, data were collected for identification and electrical projects in different MUCs located in Natal. In some of them, measurements were made of demand for 7 consecutive days and adjusted for an integration interval of 30 minutes. The estimation of the maximum demand was made through mathematical models that calculate the desired response from a set of information previously known of MUCs. The models tested were simple linear regressions, multiple linear regressions and artificial neural networks. The various calculated results over the study were compared, and ultimately, the best answer found was put into comparison with the previously proposed model
Resumo:
Relevant researches have been growing on electric machine without mancal or bearing and that is generally named bearingless motor or specifically, mancal motor. In this paper it is made an introductory presentation about bearingless motor and its peripherical devices with focus on the design and implementation of sensors and interfaces needed to control rotor radial positioning and rotation of the machine. The signals from the machine are conditioned in analogic inputs of DSP TMS320F2812 and used in the control program. This work has a purpose to elaborate and build a system with sensors and interfaces suitable to the input and output of DSP TMS320F2812 to control a mancal motor, bearing in mind the modularity, simplicity of circuits, low number of power used, good noise imunity and good response frequency over 10 kHz. The system is tested at a modified ordinary induction motor of 3,7 kVA to be used with a bearingless motor with divided coil
Resumo:
O Laboratório de Sistemas Inteligentes do Departamento de Engenharia de Computação e Automação da Universidade Federal do Rio Grande do Norte - UFRN -tem como um de seus projetos de pesquisa -Robosense -a construção de uma plataforma robótica móvel. Trata-se de um robô provido de duas rodas, acionadas de forma diferencial, dois braços, com 5 graus de liberdade cada, um cinturão de sonares e uma cabeça estéreo. Como objetivo principal do projeto Robosense, o robô deverá ser capaz de navegar por todo o prédio do LECA, desviando de obstáculos. O sistema de navegação do robô, responsável pela geração e seguimento de rotas, atuará em malha fechada. Ou seja, sensores serão utilizados pelo sistema com o intuito de informar ao robô a sua pose atual, incluindo localização e a configuração de seus recursos. Encoders (sensores especiais de rotação) foram instalados nas rodas, bem como em todos os motores dos dois braços da cabeça estéreo. Sensores de fim-de-curso foram instalados em todas as juntas da cabeça estéreo para que seja possível sua pré-calibração. Sonares e câmeras também farão parte do grupo de sensores utilizados no projeto. O robô contará com uma plataforma composta por, a princípio, dois computadores ligados a um barramento único para uma operação em tempo real, em paralelo. Um deles será responsável pela parte de controle dos braços e de sua navegação, tomando como base as informações recebidas dos sensores das rodas e dos próximos objetivos do robô. O outro computador processará todas as informações referentes à cabeça estéreo do robô, como as imagens recebidas das câmeras. A utilização de técnicas de imageamento estéreo torna-se necessária, pois a informação de uma única imagem não determina unicamente a posição de um dado ponto correspondente no mundo. Podemos então, através da utilização de duas ou mais câmeras, recuperar a informação de profundidade da cena. A cabeça estéreo proposta nada mais é que um artefato físico que deve dar suporte a duas câmeras de vídeo, movimentá-las seguindo requisições de programas (softwares) apropriados e ser capaz de fornecer sua pose atual. Fatores como velocidade angular de movimentação das câmeras, precisão espacial e acurácia são determinantes para o eficiente resultado dos algoritmos que nesses valores se baseiam