Algoritmos genéticos e processamento paralelo aplicados à definição e treinamento de redes neurais perceptron de múltiplas camadas


Autoria(s): Albuquerque, Ana Claudia Medeiros Lins de
Contribuinte(s)

Melo, Jorge Dantas de

CPF:03100029402

http://lattes.cnpq.br/3053521110028119

CPF:09463097449

http://lattes.cnpq.br/7325007451912598

Dória Neto, Adrião Duarte

CPF:10749896434

http://lattes.cnpq.br/1987295209521433

Coelho, Leandro dos Santos

CPF:45728089020

http://lattes.cnpq.br/3483667901818921

Maitelli, André Laurindo

CPF:42046637100

http://lattes.cnpq.br/0477027244297797

Lacerda, Estéfane George Macedo de

CPF:62678361420

http://lattes.cnpq.br/1763651349773729

Data(s)

17/12/2014

22/06/2009

17/12/2014

01/02/2005

Resumo

ln this work, it was deveIoped a parallel cooperative genetic algorithm with different evolution behaviors to train and to define architectures for MuItiIayer Perceptron neural networks. MuItiIayer Perceptron neural networks are very powerful tools and had their use extended vastIy due to their abiIity of providing great resuIts to a broad range of appIications. The combination of genetic algorithms and parallel processing can be very powerful when applied to the Iearning process of the neural network, as well as to the definition of its architecture since this procedure can be very slow, usually requiring a lot of computational time. AIso, research work combining and appIying evolutionary computation into the design of neural networks is very useful since most of the Iearning algorithms deveIoped to train neural networks only adjust their synaptic weights, not considering the design of the networks architecture. Furthermore, the use of cooperation in the genetic algorithm allows the interaction of different populations, avoiding local minima and helping in the search of a promising solution, acceIerating the evolutionary process. Finally, individuaIs and evolution behavior can be exclusive on each copy of the genetic algorithm running in each task enhancing the diversity of populations

Neste trabalho foi desenvolvido um algoritmo genético paralelo cooperativo com diferentes comportamentos evolutivos para o treinamento e definição de redes neurais Perceptron de Múltiplas Camadas. As redes neurais Perceptron de Múltiplas Camadas são ferramentas poderosas e tiveram seu uso intensificado já que são capazes de proporcionar bons resultados para diversas aplicações. A combinação de algoritmos genéticos e de processamento paralelo aplicados no processo de treinamento e na definição de redes neurais Perceptron de Múltiplas Camadas é interessante uma vez que o processo de aprendizagem geralmente é lento e a maioria dos algoritmos de treinamento existente realiza apenas o ajuste dos pesos sinápticos da rede neural. Sabe-se que, sem conhecimento prévio da aplicação, é difícil definir uma arquitetura ideal para a rede neural. Desta maneira, tem-se que técnicas para automatizar a definição da arquitetura de redes neurais são de interesse. Além disso, o uso de cooperação no algoritmo genético permite a exploração de áreas promissoras do espaço de busca encontradas por diferentes populações, pode evitar mínimos locais e possibilita a re-introdução nas populações de informações previamente perdidas. Por fim, através da incorporação de diferentes comportamentos evolutivos, intensifica-se a diversidade dos indivíduos e, assim, a busca por uma solução promissora

Formato

application/pdf

Identificador

ALBUQUERQUE, Ana Claudia Medeiros Lins de. Algoritmos genéticos e processamento paralelo aplicados à definição e treinamento de redes neurais perceptron de múltiplas camadas. 2005. 89 f. Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2005.

http://repositorio.ufrn.br:8080/jspui/handle/123456789/15270

Idioma(s)

por

Publicador

Universidade Federal do Rio Grande do Norte

BR

UFRN

Programa de Pós-Graduação em Engenharia Elétrica

Automação e Sistemas; Engenharia de Computação; Telecomunicações

Direitos

Acesso Aberto

Palavras-Chave #Redes neurais #Redes neurais artificiais #Algoritmos genéticos #Processamento paralelo #Computação evolutiva #Neural networks #Genetic algorithm #Parallel processing #Evolucionary computation #CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Tipo

Dissertação