984 resultados para Piezoelectric force microscopy
Resumo:
Indium nitride (InN) films were grown on sapphire substrates by radio-frequency plasma-excited molecular beam epitaxy (RF-MBE). Atomic force microscopy (AFM), reflection high-energy electron diffraction (RHEED), double-crystal X-ray diffraction (DCXRD) and photoluminescence (PL) spectroscopy were used to characterize the InN films. The results show that the InN films have good crystallinity, with full-width at half-maximum (FWHM) of InN (0 0 0 2) DCXRD peak being 14 arcmin. At room temperature, a strong PL peak at 0.79eV was observed. At 1.9eV or so, no peak was observed. In addition, it is found that the InN films grown with low-temperature (LT) InN buffer layer are of better quality than those without LT-InN buffer layer. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Submicron Hall magnetometry has been demonstrated as an efficient technique to probe extremely weak magnetic fields. In this letter, we analyze the possibility of employing it to detect single electron spin. Signal strength and readout time are estimated and discussed with respect to a number of practical issues. (C) 2005 American Institute of Physics.
Resumo:
Illustrated in this paper are two examples of altering planar growth into self-assembled island formation by adapting experimental conditions. Partial oxidation, undersaturated solution and high temperature change Frank-Van der Merwe (FM) growth of Al0.3Ga0.7As in liquid phase epitaxy (LPE) into isolated island deposition. Low growth speed, high temperature and in situ annealing in molecular beam epitaxy (MBE) cause the origination of InAs/GaAs quantum dots (QDs) to happen while the film is still below critical thickness in Stranski-Krastanow (SK) mode. Sample morphologies are characterized by scanning electron microscopy (SEM) or atomic force microscopy (AFM). It is suggested that such achievements are of value not only to fundamental researches but also to spheres of device applications as well. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Mn ions were implanted to n-type Si(0 0 1) single crystal by low-energy ion beam deposition technique with an energy of 1000 eV and a dose of 7.5 x 10(17) cm(-2). The samples were held at room temperature and at 300degreesC during implantation. Auger electron spectroscopy depth profiles of samples indicate that the Mn ions reach deeper in the sample implanted at 300degreesC than in the sample implanted at room temperature. X-ray diffraction measurements show that the structure of the sample implanted at room temperature is amorphous while that of the sample implanted at 300degreesC is crystallized. There are no new phases found except silicon both in the two samples. Atomic force microscopy images of samples indicate that the sample implanted at 300degreesC has island-like humps that cover the sample surface while there is no such kind of characteristic in the sample implanted at room temperature. The magnetic properties of samples were investigated by alternating gradient magnetometer (AGM). The sample implanted at 300degreesC shows ferromagnetic behavior at room temperature. (C) 2004 Elsevier BN. All rights reserved.
Resumo:
We have demonstrated 1.5 mum light emission from InAs quantum dots (QDs) capped with a thin GaAs layer. The extension of the emission wavelength can be assigned to the large QD height. We also investigate the effect of growth interruption on the PL properties and the shape of InAs QDs fabricated by migration-enhanced growth (MEG). Contrary to expectation, we observed a remarkable blueshift of the emission energy with the growth interruption in MEG mode. Detailed investigations reveal that the blueshift is related to the reduced island height with the growth interruption, which is confirmed by reflection high-energy electron diffraction (RHEED) patterns and atomic force microscopy (AFM) measurement results. Accordingly, the structure changes of the islands are interpreted in terms of thermodynamic and kinetic theories. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Extremely low density self-assembled InAs quantum dots are grown by a combination technique of in situ annealing for 2 min and pause of substrate rotation during molecular beam epitaxy. The surface morphology and structural characteristics of the quantum dots are scrutinized by atomic force microscopy and photoluminescence spectra. It is found that the quantum dot size and density increase as the InAs deposition amount rises. Quantum dots with a density between 2.5 x 10(7) cm(-2) and 2.2 x 10(8) cm(-2) are 2-5 nm in height and 18-39 nm in diameter. It is believed that as-grown InAs nanodots may be of important value for future single quantum dot research.
Resumo:
The epitaxial growth of AlxGa1-xN film with high Al content by metalorganic chemical vapor deposition (MOCVD) has been accomplished. The resulting Al content was determined to be 54% by high resolution X-ray diffraction (HRXRD) and Vegard's law. The full width at half maximum (FWHM) of the AlGaN (0002) HRXRD rocking curve was about 597 arcsec. Atomic force microscopy (AFM) image showed a relatively rough surface with grain-like islands, mainly coming from the low surface mobility of adsorbed Alspecies. From transmittance measurement, the cut-off wavelength was around 280 nm and Fabry-Perot fringes were clearly visible in the transmission region. Cathodoluminescence (CL) measurement indicated that there existed a uniformity in the growth direction and a non-uniformity in the lateral direction. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
First, GaSb epilayers were grown on (001) GaAs substrates by molecular beam epitaxy. We determined that the GaSb layers had very smooth surfaces using atomic force microscopy. Then, very short period InAs/ GaSb superlattices (SLs) were grown on the GaSb buffer layer. The optical and crystalline properties of the superlattices were studied by low-temperature photoluminescence spectra and high resolution transition electron microscopy. In order to determine the interface of SLs, the samples were tested by Raman-scattering spectra at room temperature. Results indicated that the peak wavelength of SLs with clear interfaces and integrated periods is between 2.0 and 2.6 mu m. The SL interface between InAs and GaSb is InSb-like.
Resumo:
Al0.58Ga0.42N epilayers are grown by ammonia gas source molecular beam epitaxy (NH3-MBE) on (0001) sapphire substrate using AlGaN buffer layer. The effects of the buffer layer growth temperature on the properties of Al0.58Ga0.42N epilayer are especially investigated. In-situ high-energy electron diffraction (RHEED), double-crystal X-ray diffraction (DCXRD), atomic force microscopy (AFM), photoconductivity measurement and cathodoluminescence (CL) are used to characterize the samples. It is found that high growth temperature of AlGaN buffer layer would improve the crystalline quality, surface smoothness, optical quality and uniformity of the Al0.58Ga0.42N epilayer. The likely reason for such improvements is also suggested. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
AlGaN/AlN/GaN high electron mobility transistor (HEMT) structures with high mobility GaN channel layer were grown on 50 min diameter semi-insulating (SI) 6H-SiC substrates by metalorganic chemical vapor deposition and large periphery HEMT devices were fabricated and characterized. High two-dimensional electron gas mobility of 2215 cm(2)/V s at room temperature with sheet electron concentration of 1.044 x 10(13)/cm(2) was achieved. The 50 mm diameter HEMT wafer exhibited a low average sheet resistance of 251.0 Omega/square, with the resistance uniformity of 2.02%. Atomic force microscopy measurements revealed a smooth AlGaN surface with a root-mean-square roughness of 0.27 nm for a scan area of 5 mu mi x 5 pm. The 1-mm gate width devices fabricated using the materials demonstrated a very high continuous wave output power of 9.39 W at 8 GHz, with a power added efficiency of 46.2% and power gain of 7.54 dB. A maximum drain current density of 1300 mA/mm, an extrinsic transconductance of 382 mS/mm, a current gain cutoff frequency of 31 GHz and a maximum frequency of oscillation 60 GHz were also achieved in the same devices. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The three-dimensional morphology of In(Ga)As nanostructures embedded in a GaAs matrix is investigated by combining atomic force microscopy and removal of the GaAs cap layer by selective wet etching. This method is used to investigate how the morphology of In(Ga)As quantum dots changes upon GaAs capping and subsequent in situ etching with AsBr3. A wave function calculation based on the experimentally determined morphologies suggests that quantum dots transform into quantum rings during in situ etching. (c) 2007 American Institute of Physics.
Resumo:
A detailed observation was made using atomic force microscopy on the two- to three-dimensional (2D-3D) growth mode transition in the molecular-beam epitaxy of InAs/GaAs(001). The evolution of the 3D InAs islands during the 2D-3D mode transition was divided into two successive phases. The first phase may be explained in terms of a critical phenomenon of the second-order phase transition.
Resumo:
GaSb 1 mu m-thick layers were grown by molecular beam epitaxy on GaAs (001). The effects of the growth conditions on the crystalline quality, surface morphology, electrical properties and optical properties were studied by double crystalline x-ray diffraction, atomic force microscopy, Hall measurement and photoluminescence spectroscopy, respectively. It was found that the surface roughness and hole mobility are highly dependent on the antimony-to-gallium flux ratios and growth temperatures. The crystalline quality, electrical properties and optical properties of GaSb layers were also studied as functions of growth rate, and it was found that a suitably low growth rate is beneficial for the crystalline quality and electrical and optical properties. Better crystal quality GaSb layers with a minimum root mean square surface roughness of 0.1 nm and good optical properties were obtained at a growth rate of 0.25 mu m h(-1).
Resumo:
High-mobility Al0.3Ga0.7N/AlN/GaN high electron mobility transistors (HEMT) structure has been grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrate. Electron mobility of 2185 cm(2)/V s at room temperature and 15,400 cm(2)/V s at 80 K with 2DEG density of 1.1 X 10(13) cm(-2) are achieved. The corresponding sheet resistance of the HEMT wafer is 258.7 Omega/sq. The AlN interfacial layer between the GaN buffer and the AlGaN barrier layer reduces the alloy disorder scattering. X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) measurements have been conducted, and confirmed that the wafer has a high crystal quality. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The chemical properties of AlxGa1-xN surfaces exposed to air for different time periods are investigated by atomic force microscopy (AFM), photoluminescence (PL) measurement and X-ray photoelectron spectroscopy (XPS). PL and AFM results show that AlxGa1-xN samples exhibit different surface characteristics for different air-exposure times and Al contents. The XPS spectra of the Al 2p and Ga 2p core levels indicate that the peaks shifted slightly, from an Al-N to an Al-O bond and from a Ga-N to a Ga-O bond. All of these results show that the epilayer surface contains a large amount of Ga and Al oxides. (c) 2006 Elsevier B.V. All rights reserved.