981 resultados para Natural interactions
Resumo:
Safety is one of the major world health issues, and is even more acute for “vulnerable” road users, pedestrians and cyclists. At the same time, public authorities are promoting the active modes of transportation that involve these very users for their health benefits. It is therefore important to understand the factors and designs that provide the best safety for vulnerable road users and encourage more people to use these modes. Qualitative and quantitative shortcomings of collisions make it necessary to use surrogate measures of safety in studying these modes. Some interactions without a collision such as conflicts can be good surrogates of collisions as they are more frequent and less costly. To overcome subjectivity and reliability challenges, automatic conflict analysis using video cameras and deriving users’ trajectories is a solution to overcome shortcomings of manual conflict analysis. The goal of this paper is to identify and characterize various interactions between cyclists and pedestrians at bus stops along bike paths using a fully automated process. Three conflict severity indicators are calculated and adapted to the situation of interest to capture those interactions. A microscopic analysis of users’ behavior is proposed to explain interactions more precisely. Eventually, the study aims to show the capability of automatically collecting and analyzing data for pedestrian-cyclist interactions at bus stops along segregated bike paths in order to better understand the actual and perceived risks of these facilities.
Resumo:
Collections of biological specimens are fundamental to scientific understanding and characterization of natural diversity - past, present and future. This paper presents a system for liberating useful information from physical collections by bringing specimens into the digital domain so they can be more readily shared, analyzed, annotated and compared. It focuses on insects and is strongly motivated by the desire to accelerate and augment current practices in insect taxonomy which predominantly use text, 2D diagrams and images to describe and characterize species. While these traditional kinds of descriptions are informative and useful, they cannot cover insect specimens "from all angles" and precious specimens are still exchanged between researchers and collections for this reason. Furthermore, insects can be complex in structure and pose many challenges to computer vision systems. We present a new prototype for a practical, cost-effective system of off-the-shelf components to acquire natural-colour 3D models of insects from around 3 mm to 30 mm in length. ("Natural-colour" is used to contrast with "false-colour", i.e., colour generated from, or applied to, gray-scale data post-acquisition.) Colour images are captured from different angles and focal depths using a digital single lens reflex (DSLR) camera rig and two-axis turntable. These 2D images are processed into 3D reconstructions using software based on a visual hull algorithm. The resulting models are compact (around 10 megabytes), afford excellent optical resolution, and can be readily embedded into documents and web pages, as well as viewed on mobile devices. The system is portable, safe, relatively affordable, and complements the sort of volumetric data that can be acquired by computed tomography. This system provides a new way to augment the description and documentation of insect species holotypes, reducing the need to handle or ship specimens. It opens up new opportunities to collect data for research, education, art, entertainment, biodiversity assessment and biosecurity control. © 2014 Nguyen et al.
Resumo:
This paper presents a layered framework for the purposes of integrating different Socio-Technical Systems (STS) models and perspectives into a whole-of-systems model. Holistic modelling plays a critical role in the engineering of STS due to the interplay between social and technical elements within these systems and resulting emergent behaviour. The framework decomposes STS models into components, where each component is either a static object, dynamic object or behavioural object. Based on existing literature, a classification of the different elements that make up STS, whether it be a social, technical or a natural environment element, is developed; each object can in turn be classified according to the STS elements it represents. Using the proposed framework, it is possible to systematically decompose models to an extent such that points of interface can be identified and the contextual factors required in transforming the component of one model to interface into another is obtained. Using an airport inbound passenger facilitation process as a case study socio-technical system, three different models are analysed: a Business Process Modelling Notation (BPMN) model, Hybrid Queue-based Bayesian Network (HQBN) model and an Agent Based Model (ABM). It is found that the framework enables the modeller to identify non-trivial interface points such as between the spatial interactions of an ABM and the causal reasoning of a HQBN, and between the process activity representation of a BPMN and simulated behavioural performance in a HQBN. Such a framework is a necessary enabler in order to integrate different modelling approaches in understanding and managing STS.
Resumo:
Natural free convection is a process of great importance in disciplines from hydrology to meteorology, oceanography, planetary sciences, and economic geology, and for applications in carbon sequestration and nuclear waste disposal. It has been studied for over a century - but almost exclusively in theoretical and laboratory settings, Despite its importance, conclusive primary evidence of free convection in porous media does not currently exist in a natural field setting. Here, we present recent electrical resistivity measurements from a sabkha aquifer near Abu Dhabi, United Arab Emirates, where large density inversions exist. The geophysical images from this site provide, for the first time, compelling field evidence of fingering associated with natural free convection in groundwater.
Resumo:
Changes in global climate and land use affect important prolesses from evapotranspiration and groundwater recharge to carbon storage and biochemical cycling. Near surface soil moisture is pivotal to understand the consequences of these changes. However, the dynamic interactions between vegetation and soil moisture remain largely unresolved because it is difficult to monitor and quantify subsurface hydrologic fluxes at relevant scales. Here we use electrical resistivity to monitor the influence of climate and vegetation on root-zone moisture, bridging the gap between remotely-sensed and in-situ point measurements. Our research quantifies large seasonal differences in root-zone moisture dynamics for a forest-grassland ecotone. We found large differences in effective rooting depth and moisture distributions for the two vegetation types. Our results highlight the likely impacts of land transformations on groun ter recharge, streamflow, and land-atmosphere exchanges.
Resumo:
In the general population it is evident that parent feeding practices can directly shape a child’s life long dietary intake. Young children undergoing childhood cancer treatment may experience feeding difficulties and limited food intake, due to the inherent side effects of their anti-cancer treatment. What is not clear is how these treatment side effects are influencing the parent–child feeding relationship during anti-cancer treatment. This retrospective qualitative study collected telephone based interview data from 38 parents of childhood cancer patients who had recently completed cancer treatment (child’s mean age: 6.98 years). Parents described a range of treatment side effects that impacted on their child’s ability to eat, often resulting in weight loss. Sixty-one percent of parents (n = 23) reported high levels of stress in regard to their child’s eating and weight loss during treatment. Parents reported stress, feelings of helplessness, and conflict and/or tension between parent and the child during feeding/eating interactions. Parents described using both positive and negative feeding practices, such as: pressuring their child to eat, threatening the insertion of a nasogastric feeding tube, encouraging the child to eat and providing home cooked meals in hospital. Results indicated that parent stress may lead to the use of coping strategies such as positive or negative feeding practices to entice their child to eat during cancer treatment. Future research is recommended to determine the implication of parent feeding practice on the long term diet quality and food preferences of childhood cancer survivors.
Resumo:
Cell adhesion receptors play a central role in sensing and integrating signals provided by the cellular environment. Thus, understanding adhesive interactions at the cell-biomaterial interface is essential to improve the design of implants that should emulate certain characteristics of the cell's natural environment. Numerous cell adhesion assays have been developed; among these, atomic force microscopy-based single-cell force spectroscopy (AFM-SCFS) provides a versatile tool to quantify cell adhesion at physiological conditions. Here we discuss how AFM-SCFS can be used to quantify the adhesion of living cells to biomaterials and give examples of using AFM-SCFS in tissue engineering and regenerative medicine. We anticipate that in the near future, AFM-SCFS will be established in the biomaterial field as an important technique to quantify cell-biomaterial interactions and thereby will contribute to the optimization of implants, scaffolds, and medical devices.
Resumo:
Interactions between the anti-carcinogens, bendamustine (BDM) and dexamethasone (DXM), with bovine serum albumin (BSA) were investigated with the use of fluorescence and UV–vis spectroscopies under pseudo-physiological conditions (Tris–HCl buffer, pH 7.4). The static mechanism was responsible for the fluorescence quenching during the interactions; the binding formation constant of the BSA–BDM complex and the binding number were 5.14 × 105 L mol−1 and 1.0, respectively. Spectroscopic studies for the formation of BDM–BSA complex were interpreted with the use of multivariate curve resolution – alternating least squares (MCR–ALS), which supported the complex formation. The BSA samples treated with site markers (warfarin – site I and ibuprofen – site II) were reacted separately with BDM and DXM; while both anti-carcinogens bound to site I, the binding constants suggested that DXM formed a more stable complex. Relative concentration profiles and the fluorescence spectra associated with BDM, DXM and BSA, were recovered simultaneously from the full fluorescence excitation–emission data with the use of the parallel factor analysis (PARAFAC) method. The results confirmed that on addition of DXM to the BDM–BSA complex, the BDM was replaced and the DXM–BSA complex formed; free BDM was released. This finding may have consequences for the transport of these drugs during any anti-cancer treatment.
Resumo:
Samples of Forsythia suspensa from raw (Laoqiao) and ripe (Qingqiao) fruit were analyzed with the use of HPLC-DAD and the EIS-MS techniques. Seventeen peaks were detected, and of these, twelve were identified. Most were related to the glucopyranoside molecular fragment. Samples collected from three geographical areas (Shanxi, Henan and Shandong Provinces), were discriminated with the use of hierarchical clustering analysis (HCA), discriminant analysis (DA), and principal component analysis (PCA) models, but only PCA was able to provide further information about the relationships between objects and loadings; eight peaks were related to the provinces of sample origin. The supervised classification models-K-nearest neighbor (KNN), least squares support vector machines (LS-SVM), and counter propagation artificial neural network (CP-ANN) methods, indicated successful classification but KNN produced 100% classification rate. Thus, the fruit were discriminated on the basis of their places of origin.
Resumo:
Videogame control interfaces continue to evolve beyond their traditional roots, with devices encouraging more natural forms of interaction growing in number and pervasiveness. Yet little is known about their true potential for intuitive use. This paper proposes methods to leverage existing intuitive interaction theory for games research, specifically by examining different types of naturally mapped control interfaces for videogames using new measures for previous player experience. Three commercial control devices for a racing game were categorised using an existing typology, according to how the interface maps physical control inputs with the virtual gameplay actions. The devices were then used in a within-groups (n=64) experimental design aimed at measuring differences in intuitive use outcomes. Results from mixed design ANOVA are discussed, along with implications for the field.
Resumo:
For people with intellectual disabilities, there are significant barriers to inclusion in socially cooperative endeavors. This paper investigates the effectiveness of Stomp, a tangible user interface (TUI) designed to provide new participatory experiences for people with intellectual disability. Results from an observational study reveal the extent to which the Stomp system supports social and physical interaction. The tangible, spatial, and embodied qualities of Stomp result in an experience that does not rely on the acquisition of specific competencies before interaction and engagement can occur.
Resumo:
A sound understanding of travellers’ behavioural changes and adaptation when facing a natural disaster is a key factor in efficiently and effectively managing transport networks at such times. This study specifically investigates the importance of travel/traffic information and its impact on travel behaviour during natural disasters. Using the 2011 Brisbane flood as a case study, survey respondents’ perceptions of the importance of travel/traffic information before, during, and after the flood were modelled using random-effects ordered logit. A hysteresis phenomenon was observed: respondents’ perceptions of the importance of travel/traffic information increased during the flood, and although its perceived importance decreased after the flood, it did not return to the pre-flood level. Results also reveal that socio-demographic features (such as gender and age) have a significant impact on respondents’ perceptions of the importance of travel/traffic information. The roles of travel time and safety in a respondent’s trip planning are also significantly correlated to their perception of the importance of this information. The analysis further shows that during the flood, respondents generally thought that travel/traffic information was important, and adjusted their travel plans according to information received. When controlling for other factors, the estimated odds of changing routes and cancelling trips for a respondent who thought that travel/traffic information was important, are respectively about three times and seven times the estimated odds for a respondent who thought that travel/traffic information was not important. In contrast, after the flood, the influence of travel/traffic information on respondents’ travel behaviour diminishes. Finally, the analysis shows no evidence of the influence of travel/traffic information’s on respondents’ travel mode; this indicates that inducing travel mode change is a challenging task.