989 resultados para MASSES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

R. Zwiggelaar, T.C. Parr, J.E. Schumm. I.W. Hutt, S.M. Astley, C.J. Taylor and C.R.M. Boggis, 'Model-based detection of spiculated lesions in mammograms', Medical Image Analysis 3 (1), 39-62 (1999)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manfred Beckmann, David P. Enot, David P. Overy, and John Draper (2007). Representation, comparison, and interpretation of metabolome fingerprint data for total composition analysis and quality trait investigation in potato cultivars. Journal of Agricultural and Food Chemistry, 55 (9) pp.3444-3451 RAE2008

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article discusses the way in which the Chopin Year of 1910 was celebrated in Wielkopolska. It presents a script prepared in the nineteenth century and shows similarities with celebrations of Mickiewicz and other Polish heroes and artists. Invariably used in such commemorations was a “symbolic capital” that made it easier to create an intergenerational code, thereby disseminating knowledge of national culture and history. A significant role was played in 1910 by a centenary panel, which produced “Guidelines for popular Chopin celebrations” and also many occasional, popular materials. Chopin’s induction into the national pantheon involved the use of audio material (vocal and instrumental concerts), verbal material (articles, poems, lectures and brochures) and also a visual code (anniversary window stickers, tableaux vivants or tableaux illuminés). Illuminated pictures – recommended by a catalogue of slides produced in Poznań – stimulated the imagination of the masses and served as a guide through the composer’s life and work, and their impact was enhanced by a commentary. Most of the living pictures were probably inspired by Henryk Siemiradzki’s canvas Chopin grający na fortepianie w salonie księcia Radziwiłła [Chopin playing the piano in Prince Radziwiłł’s salon] and Józef Męcina Krzesz’s painting Ostatnie akordy Chopina [Chopin’s last chords]. This combination of codes made it possible to create a model adapted to the times and to the expectations of a mass audience. The Chopin anniversary, in which admiration was inseparably intertwined with manipulation, was a pretext for strengthening the national identity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lidar is an optical remote sensing instrument that can measure atmospheric parameters. A Raman lidar instrument (UCLID) was established at University College Cork to contribute to the European lidar network, EARLINET. System performance tests were carried out to ensure strict data quality assurance for submission to the EARLINET database. Procedures include: overlap correction, telecover test, Rayleigh test and zero bin test. Raman backscatter coefficients, extinction coefficients and lidar ratio were measured from April 2010 to May 2011 and February 2012 to June 2012. Statistical analysis of the profiles over these periods provided new information about the typical atmospheric scenarios over Southern Ireland in terms of aerosol load in the lower troposphere, the planetary boundary layer (PBL) height, aerosol optical density (AOD) at 532 nm and lidar ratio values. The arithmetic average of the PBL height was found to be 608 ± 138 m with a median of 615 m, while average AOD at 532 nm for clean marine air masses was 0.119 ± 0.023 and for polluted air masses was 0.170 ± 0.036. The lidar ratio showed a seasonal dependence with lower values found in winter and autumn (20 ± 5 sr) and higher during spring and winter (30 ± 12 sr). Detection of volcanic particles from the eruption of the volcano Eyjafjallajökull in Iceland was measured between 21 April and 7 May 2010. The backscatter coefficient of the ash layer varied between 2.5 Mm-1sr-1 and 3.5 Mm-1sr-1, and estimation of the AOD at 532 nm was found to be between 0.090 and 0.215. Several aerosol loads due to Saharan dust particles were detected in Spring 2011 and 2012. Lidar ratio of the dust layers were determine to be between 45 and 77 sr and AOD at 532 nm during the dust events range between 0.84 to 0.494.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an attempt to provide an analytical entry point into my compositional practice, I have identified eight themes which are significantly recurrent: reduction – the selection of a small number of elements; imperfection – a damaged or warped characteristic of sound; hierarchy – a concern with the roles of instruments with regard to their relative prominence; motion – apparently static sound masses consist of fine internal movement; listener perception – expectations for change influence the experience of affect; translation – the transitioning of electronic sounds to the acoustic realm, and vice versa; immersion – the creation of an accommodating soundscape; blurring – smearing and overlapping sounds or genres. Each of these eight factors is associated with relevant precedents in the history and theory of music that have been influential on my work. These include the minimalist compositions of Steve Reich and Arvo Pärt; the lo-fi aesthetic of Boards of Canada and My Bloody Valentine; concerns with political hierarchy in the work of Louis Andriessen; the variations of dynamics and microtonal shifts of Giacinto Scelsi; Leonard B. Meyer's account of expectation in music; cross-fertilisation of the acoustic and electronic in pieces by Gérard Grisey and Gyorgy Ligeti; the immersive technique of Brian Eno's ambient music; and the overlapping sounds of Aphex Twin. These eight factors are variously applicable to the eleven submitted pieces, which are individually analysed with reference to the most significant of the categories. Together they form a musical language that sustains the interaction of a variety of techniques, concepts and genres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to determine the size-resolved chemical composition of single particles in real-time an ATOFMS was deployed at urban background sites in Paris and Barcelona during the MEGAPOLI and SAPUSS monitoring campaigns respectively. The particle types detected during MEGAPOLI included several carbonaceous species, metal-containing types and sea-salt. Elemental carbon particle types were highly abundant, with 86% due to fossil fuel combustion and 14% attributed to biomass burning. Furthermore, 79% of the EC was apportioned to local emissions and 21% to continental transport. The carbonaceous particle types were compared with quantitative measurements from other instruments, and while direct correlations using particle counts were poor, scaling of the ATOFMS counts greatly improved the relationship. During SAPUSS carbonaceous species, sea-salt, dust, vegetative debris and various metal-containing particle types were identified. Throughout the campaign the site was influenced by air masses altering the composition of particles detected. During North African air masses the city was heavily influenced by Saharan dust. A regional stagnation was also observed leading to a large increase in carbonaceous particle counts. While the ATOFMS provides a list of particle types present during the measurement campaigns, the data presented is not directly quantitative. The quantitative response of the ATOFMS to metals was examined by comparing the ion signals within particle mass spectra and to hourly mass concentrations of; Na, K, Ca, Ti, V, Cr, Mn, Fe, Zn and Pb. The ATOFMS was found to have varying correlations with these metals depending on sampling issues such as matrix effects. The strongest correlations were observed for Al, Fe, Zn, Mn and Pb. Overall the results of this work highlight the excellent ability of the ATOFMS in providing composition and mixing state information on atmospheric particles at high time resolution. However they also show its limitations in delivering quantitative information directly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider massless higher spin gauge theories with both electric and magnetic sources, with a special emphasis on the spin two case. We write the equations of motion at the linear level (with conserved external sources) and introduce Dirac strings so as to derive the equations from a variational principle. We then derive a quantization condition that generalizes the familiar Dirac quantization condition, and which involves the conserved charges associated with the asymptotic symmetries for higher spins. Next we discuss briefly how the result extends to the nonlinear theory. This is done in the context of gravitation, where the Taub-NUT solution provides the exact solution of the field equations with both types of sources. We rederive, in analogy with electromagnetism, the quantization condition from the quantization of the angular momentum. We also observe that the Taub-NUT metric is asymptotically flat at spatial infinity in the sense of Regge and Teitelboim (including their parity conditions). It follows, in particular, that one can consistently consider in the variational principle configurations with different electric and magnetic masses. © 2006 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Mammography is known to be one of the most difficult radiographic exams to interpret. Mammography has important limitations, including the superposition of normal tissue that can obscure a mass, chance alignment of normal tissue to mimic a true lesion and the inability to derive volumetric information. It has been shown that stereomammography can overcome these deficiencies by showing that layers of normal tissue lay at different depths. If standard stereomammography (i.e., a single stereoscopic pair consisting of two projection images) can significantly improve lesion detection, how will multiview stereoscopy (MVS), where many projection images are used, compare to mammography? The aim of this study was to assess the relative performance of MVS compared to mammography for breast mass detection. METHODS: The MVS image sets consisted of the 25 raw projection images acquired over an arc of approximately 45 degrees using a Siemens prototype breast tomosynthesis system. The mammograms were acquired using a commercial Siemens FFDM system. The raw data were taken from both of these systems for 27 cases and realistic simulated mass lesions were added to duplicates of the 27 images at the same local contrast. The images with lesions (27 mammography and 27 MVS) and the images without lesions (27 mammography and 27 MVS) were then postprocessed to provide comparable and representative image appearance across the two modalities. All 108 image sets were shown to five full-time breast imaging radiologists in random order on a state-of-the-art stereoscopic display. The observers were asked to give a confidence rating for each image (0 for lesion definitely not present, 100 for lesion definitely present). The ratings were then compiled and processed using ROC and variance analysis. RESULTS: The mean AUC for the five observers was 0.614 +/- 0.055 for mammography and 0.778 +/- 0.052 for multiview stereoscopy. The difference of 0.164 +/- 0.065 was statistically significant with a p-value of 0.0148. CONCLUSIONS: The differences in the AUCs and the p-value suggest that multiview stereoscopy has a statistically significant advantage over mammography in the detection of simulated breast masses. This highlights the dominance of anatomical noise compared to quantum noise for breast mass detection. It also shows that significant lesion detection can be achieved with MVS without any of the artifacts associated with tomosynthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continuing our development of a mathematical theory of stochastic microlensing, we study the random shear and expected number of random lensed images of different types. In particular, we characterize the first three leading terms in the asymptotic expression of the joint probability density function (pdf) of the random shear tensor due to point masses in the limit of an infinite number of stars. Up to this order, the pdf depends on the magnitude of the shear tensor, the optical depth, and the mean number of stars through a combination of radial position and the star's mass. As a consequence, the pdf's of the shear components are seen to converge, in the limit of an infinite number of stars, to shifted Cauchy distributions, which shows that the shear components have heavy tails in that limit. The asymptotic pdf of the shear magnitude in the limit of an infinite number of stars is also presented. All the results on the random microlensing shear are given for a general point in the lens plane. Extending to the general random distributions (not necessarily uniform) of the lenses, we employ the Kac-Rice formula and Morse theory to deduce general formulas for the expected total number of images and the expected number of saddle images. We further generalize these results by considering random sources defined on a countable compact covering of the light source plane. This is done to introduce the notion of global expected number of positive parity images due to a general lensing map. Applying the result to microlensing, we calculate the asymptotic global expected number of minimum images in the limit of an infinite number of stars, where the stars are uniformly distributed. This global expectation is bounded, while the global expected number of images and the global expected number of saddle images diverge as the order of the number of stars. © 2009 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is growing evidence that organo-nitrogen compounds may constitute a significant fraction of the aerosol nitrogen (N) budget. However, very little is known about the abundance and origin of this aerosol fraction. In this study, the concentration of organic nitrogen (ON) and major inorganic ions in PM2.5 aerosol were measured at the Duke Forest Research Facility near Chapel Hill, NC, during January and June of 2007. A novel on-line instrument was used, which is based on the Steam Jet Aerosol Collector (SJAC) coupled to an on-line total carbon/total nitrogen analyzer and two on-line ion chromatographs. The concentration of ON was determined by tracking the difference in concentrations of total nitrogen and of inorganic nitrogen (determined as the sum of N-ammonium and N-nitrate). The time resolution of the instrument was 30 min with a detection limit for major aerosol components of ∼0.1 mu;gm-3. Nitrogen in organic compounds contributed ∼33% on average to the total nitrogen concentration in PM2.5, illustrating the importance of this aerosol component. Absolute concentrations of ON, however, were relatively low (lt;1.0 mu;gm-3) with an average of 0.16 mu;gm-3. The absolute and relative contribution of ON to the total aerosol nitrogen budget was practically the same in January and June. In January, the concentration of ON tended to be higher during the night and early morning, while in June it tended to be higher during the late afternoon and evening. Back-trajectories and correlation with wind direction indicate that higher concentrations of ON occur in air masses originating over the continental US, while marine air masses are characterized by lower ON concentrations. The data presented in this study suggests that ON has a variety of sources, which are very difficult to quantify without information on chemical composition of this important aerosol fraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The utility of acoustic radiation force impulse (ARFI) imaging for real-time visualization of abdominal malignancies was investigated. Nine patients presenting with suspicious masses in the liver (n = 7) or kidney (n = 2) underwent combined sonography/ARFI imaging. Images were acquired of a total of 12 tumors in the nine patients. In all cases, boundary definition in ARFI images was improved or equivalent to boundary definition in B-mode images. Displacement contrast in ARFI images was superior to echo contrast in B-mode images for each tumor. The mean contrast for suspected hepatocellular carcinomas (HCCs) in B-mode images was 2.9 dB (range: 1.5-4.2) versus 7.5 dB (range: 3.1-11.9) in ARFI images, with all HCCs appearing more compliant than regional cirrhotic liver parenchyma. The mean contrast for metastases in B-mode images was 3.1 dB (range: 1.2-5.2) versus 9.3 dB (range: 5.7-13.9) in ARFI images, with all masses appearing less compliant than regional non-cirrhotic liver parenchyma. ARFI image contrast (10.4 dB) was superior to B-mode contrast (0.9 dB) for a renal mass. To our knowledge, we present the first in vivo images of abdominal malignancies in humans acquired with the ARFI method or any other technique of imaging tissue elasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivated by the Minimal Dark Matter scenario, we consider the annihilation into gamma rays of candidates in the fermionic 5-plet and scalar 7-plet representations of SU(2)L, taking into account both the Sommerfeld effect and the internal bremsstrahlung. Assuming the Einasto profile, we show that present measurements of the Galactic Center by the H.E.S.S. instrument exclude the 5-plet and 7-plet as the dominant form of dark matter for masses between 1 TeV and 20 TeV, in particular, the 5-plet mass leading to the observed dark matter density via thermal freeze-out. We also discuss prospects for the upcoming Cherenkov Telescope Array, which will be able to probe even heavier dark matter masses, including the scenario where the scalar 7-plet is thermally produced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of a strong magnetic field on the neutron-drip transition in the crust of a magnetar is studied. The composition of the crust and the neutron-drip threshold are determined numerically for different magnetic field strengths using the experimental atomic mass measurements from the 2012 Atomic Mass Evaluation complemented with theoretical masses calculated from the Brussels-Montreal Hartree-Fock-Bogoliubov nuclear mass model HFB-24. The equilibrium nucleus at the neutron-drip point is found to be independent of the magnetic field strength. As demonstrated analytically, the neutron-drip density and pressure increase almost linearly with the magnetic field strength in the strongly quantizing regime for which electrons lie in the lowest Landau level. For weaker magnetic fields, the neutron-drip density exhibits typical quantum oscillations. In this case, the neutron-drip density can be either increased by about 14% or decreased by 25% depending on the magnetic field strength. These variations are shown to be almost universal, independently of the nuclear mass model employed. These results may have important implications for the physical interpretation of timing irregularities and quasiperiodic oscillations detected in soft gamma-ray repeaters and anomalous x-ray pulsars, as well as for the cooling of strongly magnetized neutron stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The need for nuclear data far from the valley of stability, for applications such as nuclear as- trophysics or future nuclear facilities, challenges the robustness as well as the predictive power of present nuclear models. Most of the nuclear data evaluation and prediction are still performed on the basis of phenomenological nuclear models. For the last decades, important progress has been achieved in funda- mental nuclear physics, making it now feasible to use more reliable, but also more complex microscopic or semi-microscopic models in the evaluation and prediction of nuclear data for practical applications. In the present contribution, the reliability and accuracy of recent nuclear theories are discussed for most of the relevant quantities needed to estimate reaction cross sections and beta-decay rates, namely nuclear masses, nuclear level densities, gamma-ray strength, fission properties and beta-strength functions. It is shown that nowadays, mean-field models can be tuned at the same level of accuracy as the phenomenological mod- els, renormalized on experimental data if needed, and therefore can replace the phenomenogical inputs in the prediction of nuclear data. While fundamental nuclear physicists keep on improving state-of-the-art models, e.g. within the shell model or ab initio models, nuclear applications could make use of their most recent results as quantitative constraints or guides to improve the predictions in energy or mass domain that will remain inaccessible experimentally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prediction of tandem mass spectrometric (MS/MS) fragmentation for non-peptidic molecules based on structure is of immense interest to the mass spectrometrist. If a reliable approach to MS/MS prediction could be achieved its impact within the pharmaceutical industry could be immense. Many publications have stressed that the fragmentation of a molecular ion or protonated molecule is a complex process that depends on many parameters, making prediction difficult. Commercial prediction software relies on a collection of general heuristic rules of fragmentation, which involve cleaving every bond in the structure to produce a list of 'expected' masses which can be compared with the experimental data. These approaches do not take into account the thermodynamic or molecular orbital effects that impact on the molecule at the point of protonation which could influence the potential sites of bond cleavage based on the structural motif. A series of compounds have been studied by examining the experimentally derived high-resolution MS/MS data and comparing it with the in silico modelling of the neutral and protonated structures. The effect that protonation at specific sites can have on the bond lengths has also been determined. We have calculated the thermodynamically most stable protonated species and have observed how that information can help predict the cleavage site for that ion. The data have shown that this use of in silico techniques could be a possible way to predict MS/MS spectra. Copyright (C) 2009 John Wiley & Sons, Ltd.