20 resultados para MASSES

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Galaxies evolve throughout the history of the universe from the first star-forming sources, through gas-rich asymmetric structures with rapid star formation rates, to the massive symmetrical stellar systems observed at the present day. Determining the physical processes which drive galaxy formation and evolution is one of the most important questions in observational astrophysics. This thesis presents four projects aimed at improving our understanding of galaxy evolution from detailed measurements of star forming galaxies at high redshift.

We use resolved spectroscopy of gravitationally lensed z ≃ 2 - 3 star forming galaxies to measure their kinematic and star formation properties. The combination of lensing with adaptive optics yields physical resolution of ≃ 100 pc, sufficient to resolve giant Hii regions. We find that ~ 70 % of galaxies in our sample display ordered rotation with high local velocity dispersion indicating turbulent thick disks. The rotating galaxies are gravitationally unstable and are expected to fragment into giant clumps. The size and dynamical mass of giant Hii regions are in agreement with predictions for such clumps indicating that gravitational instability drives the rapid star formation. The remainder of our sample is comprised of ongoing major mergers. Merging galaxies display similar star formation rate, morphology, and local velocity dispersion as isolated sources, but their velocity fields are more chaotic with no coherent rotation.

We measure resolved metallicity in four lensed galaxies at z = 2.0 − 2.4 from optical emission line diagnostics. Three rotating galaxies display radial gradients with higher metallicity at smaller radii, while the fourth is undergoing a merger and has an inverted gradient with lower metallicity at the center. Strong gradients in the rotating galaxies indicate that they are growing inside-out with star formation fueled by accretion of metal-poor gas at large radii. By comparing measured gradients with an appropriate comparison sample at z = 0, we demonstrate that metallicity gradients in isolated galaxies must flatten at later times. The amount of size growth inferred by the gradients is in rough agreement with direct measurements of massive galaxies. We develop a chemical evolution model to interpret these data and conclude that metallicity gradients are established by a gradient in the outflow mass loading factor, combined with radial inflow of metal-enriched gas.

We present the first rest-frame optical spectroscopic survey of a large sample of low-luminosity galaxies at high redshift (L < L*, 1.5 < z < 3.5). This population dominates the star formation density of the universe at high redshifts, yet such galaxies are normally too faint to be studied spectroscopically. We take advantage of strong gravitational lensing magnification to compile observations for a sample of 29 galaxies using modest integration times with the Keck and Palomar telescopes. Balmer emission lines confirm that the sample has a median SFR ∼ 10 M_sun yr^−1 and extends to lower SFR than has been probed by other surveys at similar redshift. We derive the metallicity, dust extinction, SFR, ionization parameter, and dynamical mass from the spectroscopic data, providing the first accurate characterization of the star-forming environment in low-luminosity galaxies at high redshift. For the first time, we directly test the proposal that the relation between galaxy stellar mass, star formation rate, and gas phase metallicity does not evolve. We find lower gas phase metallicity in the high redshift galaxies than in local sources with equivalent stellar mass and star formation rate, arguing against a time-invariant relation. While our result is preliminary and may be biased by measurement errors, this represents an important first measurement that will be further constrained by ongoing analysis of the full data set and by future observations.

We present a study of composite rest-frame ultraviolet spectra of Lyman break galaxies at z = 4 and discuss implications for the distribution of neutral outflowing gas in the circumgalactic medium. In general we find similar spectroscopic trends to those found at z = 3 by earlier surveys. In particular, absorption lines which trace neutral gas are weaker in less evolved galaxies with lower stellar masses, smaller radii, lower luminosity, less dust, and stronger Lyα emission. Typical galaxies are thus expected to have stronger Lyα emission and weaker low-ionization absorption at earlier times, and we indeed find somewhat weaker low-ionization absorption at higher redshifts. In conjunction with earlier results, we argue that the reduced low-ionization absorption is likely caused by lower covering fraction and/or velocity range of outflowing neutral gas at earlier epochs. This result has important implications for the hypothesis that early galaxies were responsible for cosmic reionization. We additionally show that fine structure emission lines are sensitive to the spatial extent of neutral gas, and demonstrate that neutral gas is concentrated at smaller galactocentric radii in higher redshift galaxies.

The results of this thesis present a coherent picture of galaxy evolution at high redshifts 2 ≲ z ≲ 4. Roughly 1/3 of massive star forming galaxies at this period are undergoing major mergers, while the rest are growing inside-out with star formation occurring in gravitationally unstable thick disks. Star formation, stellar mass, and metallicity are limited by outflows which create a circumgalactic medium of metal-enriched material. We conclude by describing some remaining open questions and prospects for improving our understanding of galaxy evolution with future observations of gravitationally lensed galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The construction and LHC phenomenology of the razor variables MR, an event-by-event indicator of the heavy particle mass scale, and R, a dimensionless variable related to the transverse momentum imbalance of events and missing transverse energy, are presented.  The variables are used  in the analysis of the first proton-proton collisions dataset at CMS  (35 pb-1) in a search for superpartners of the quarks and gluons, targeting indirect hints of dark matter candidates in the context of supersymmetric theoretical frameworks. The analysis produced the highest sensitivity results for SUSY to date and extended the LHC reach far beyond the previous Tevatron results.  A generalized inclusive search is subsequently presented for new heavy particle pairs produced in √s = 7 TeV proton-proton collisions at the LHC using 4.7±0.1 fb-1 of integrated luminosity from the second LHC run of 2011.  The selected events are analyzed in the 2D razor-space of MR and R and the analysis is performed in 12 tiers of all-hadronic, single and double leptons final states in the presence and absence of b-quarks, probing the third generation sector using the event heavy-flavor content.   The search is sensitive to generic supersymmetry models with minimal assumptions about the superpartner decay chains. No excess is observed in the number or shape of event yields relative to Standard Model predictions. Exclusion limits are derived in the CMSSM framework with  gluino masses up to 800 GeV and squark masses up to 1.35 TeV excluded at 95% confidence level, depending on the model parameters. The results are also interpreted for a collection of simplified models, in which gluinos are excluded with masses as large as 1.1 TeV, for small neutralino masses, and the first-two generation squarks, stops and sbottoms are excluded for masses up to about 800, 425 and 400 GeV, respectively.

With the discovery of a new boson by the CMS and ATLAS experiments in the γ-γ and 4 lepton final states, the identity of the putative Higgs candidate must be established through the measurements of its properties. The spin and quantum numbers are of particular importance, and we describe a method for measuring the JPC of this particle using the observed signal events in the H to ZZ* to 4 lepton channel developed before the discovery. Adaptations of the razor kinematic variables are introduced for the H to WW* to 2 lepton/2 neutrino channel, improving the resonance mass resolution and increasing the discovery significance. The prospects for incorporating this channel in an examination of the new boson JPC is discussed, with indications that this it could provide complementary information to the H to ZZ* to 4 lepton final state, particularly for measuring CP-violation in these decays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel spectroscopy of trapped ions is proposed which will bring single-ion detection sensitivity to the observation of magnetic resonance spectra. The approaches developed here are aimed at resolving one of the fundamental problems of molecular spectroscopy, the apparent incompatibility in existing techniques between high information content (and therefore good species discrimination) and high sensitivity. Methods for studying both electron spin resonance (ESR) and nuclear magnetic resonance (NMR) are designed. They assume established methods for trapping ions in high magnetic field and observing the trapping frequencies with high resolution (<1 Hz) and sensitivity (single ion) by electrical means. The introduction of a magnetic bottle field gradient couples the spin and spatial motions together and leads to a small spin-dependent force on the ion, which has been exploited by Dehmelt to observe directly the perturbation of the ground-state electron's axial frequency by its spin magnetic moment.

A series of fundamental innovations is described m order to extend magnetic resonance to the higher masses of molecular ions (100 amu = 2x 10^5 electron masses) and smaller magnetic moments (nuclear moments = 10^(-3) of the electron moment). First, it is demonstrated how time-domain trapping frequency observations before and after magnetic resonance can be used to make cooling of the particle to its ground state unnecessary. Second, adiabatic cycling of the magnetic bottle off between detection periods is shown to be practical and to allow high-resolution magnetic resonance to be encoded pointwise as the presence or absence of trapping frequency shifts. Third, methods of inducing spindependent work on the ion orbits with magnetic field gradients and Larmor frequency irradiation are proposed which greatly amplify the attainable shifts in trapping frequency.

The dissertation explores the basic concepts behind ion trapping, adopting a variety of classical, semiclassical, numerical, and quantum mechanical approaches to derive spin-dependent effects, design experimental sequences, and corroborate results from one approach with those from another. The first proposal presented builds on Dehmelt's experiment by combining a "before and after" detection sequence with novel signal processing to reveal ESR spectra. A more powerful technique for ESR is then designed which uses axially synchronized spin transitions to perform spin-dependent work in the presence of a magnetic bottle, which also converts axial amplitude changes into cyclotron frequency shifts. A third use of the magnetic bottle is to selectively trap ions with small initial kinetic energy. A dechirping algorithm corrects for undesired frequency shifts associated with damping by the measurement process.

The most general approach presented is spin-locked internally resonant ion cyclotron excitation, a true continuous Stern-Gerlach effect. A magnetic field gradient modulated at both the Larmor and cyclotron frequencies is devised which leads to cyclotron acceleration proportional to the transverse magnetic moment of a coherent state of the particle and radiation field. A preferred method of using this to observe NMR as an axial frequency shift is described in detail. In the course of this derivation, a new quantum mechanical description of ion cyclotron resonance is presented which is easily combined with spin degrees of freedom to provide a full description of the proposals.

Practical, technical, and experimental issues surrounding the feasibility of the proposals are addressed throughout the dissertation. Numerical ion trajectory simulations and analytical models are used to predict the effectiveness of the new designs as well as their sensitivity and resolution. These checks on the methods proposed provide convincing evidence of their promise in extending the wealth of magnetic resonance information to the study of collisionless ions via single-ion spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theories of relativity and quantum mechanics, the two most important physics discoveries of the 20th century, not only revolutionized our understanding of the nature of space-time and the way matter exists and interacts, but also became the building blocks of what we currently know as modern physics. My thesis studies both subjects in great depths --- this intersection takes place in gravitational-wave physics.

Gravitational waves are "ripples of space-time", long predicted by general relativity. Although indirect evidence of gravitational waves has been discovered from observations of binary pulsars, direct detection of these waves is still actively being pursued. An international array of laser interferometer gravitational-wave detectors has been constructed in the past decade, and a first generation of these detectors has taken several years of data without a discovery. At this moment, these detectors are being upgraded into second-generation configurations, which will have ten times better sensitivity. Kilogram-scale test masses of these detectors, highly isolated from the environment, are probed continuously by photons. The sensitivity of such a quantum measurement can often be limited by the Heisenberg Uncertainty Principle, and during such a measurement, the test masses can be viewed as evolving through a sequence of nearly pure quantum states.

The first part of this thesis (Chapter 2) concerns how to minimize the adverse effect of thermal fluctuations on the sensitivity of advanced gravitational detectors, thereby making them closer to being quantum-limited. My colleagues and I present a detailed analysis of coating thermal noise in advanced gravitational-wave detectors, which is the dominant noise source of Advanced LIGO in the middle of the detection frequency band. We identified the two elastic loss angles, clarified the different components of the coating Brownian noise, and obtained their cross spectral densities.

The second part of this thesis (Chapters 3-7) concerns formulating experimental concepts and analyzing experimental results that demonstrate the quantum mechanical behavior of macroscopic objects - as well as developing theoretical tools for analyzing quantum measurement processes. In Chapter 3, we study the open quantum dynamics of optomechanical experiments in which a single photon strongly influences the quantum state of a mechanical object. We also explain how to engineer the mechanical oscillator's quantum state by modifying the single photon's wave function.

In Chapters 4-5, we build theoretical tools for analyzing the so-called "non-Markovian" quantum measurement processes. Chapter 4 establishes a mathematical formalism that describes the evolution of a quantum system (the plant), which is coupled to a non-Markovian bath (i.e., one with a memory) while at the same time being under continuous quantum measurement (by the probe field). This aims at providing a general framework for analyzing a large class of non-Markovian measurement processes. Chapter 5 develops a way of characterizing the non-Markovianity of a bath (i.e.,whether and to what extent the bath remembers information about the plant) by perturbing the plant and watching for changes in the its subsequent evolution. Chapter 6 re-analyzes a recent measurement of a mechanical oscillator's zero-point fluctuations, revealing nontrivial correlation between the measurement device's sensing noise and the quantum rack-action noise.

Chapter 7 describes a model in which gravity is classical and matter motions are quantized, elaborating how the quantum motions of matter are affected by the fact that gravity is classical. It offers an experimentally plausible way to test this model (hence the nature of gravity) by measuring the center-of-mass motion of a macroscopic object.

The most promising gravitational waves for direct detection are those emitted from highly energetic astrophysical processes, sometimes involving black holes - a type of object predicted by general relativity whose properties depend highly on the strong-field regime of the theory. Although black holes have been inferred to exist at centers of galaxies and in certain so-called X-ray binary objects, detecting gravitational waves emitted by systems containing black holes will offer a much more direct way of observing black holes, providing unprecedented details of space-time geometry in the black-holes' strong-field region.

The third part of this thesis (Chapters 8-11) studies black-hole physics in connection with gravitational-wave detection.

Chapter 8 applies black hole perturbation theory to model the dynamics of a light compact object orbiting around a massive central Schwarzschild black hole. In this chapter, we present a Hamiltonian formalism in which the low-mass object and the metric perturbations of the background spacetime are jointly evolved. Chapter 9 uses WKB techniques to analyze oscillation modes (quasi-normal modes or QNMs) of spinning black holes. We obtain analytical approximations to the spectrum of the weakly-damped QNMs, with relative error O(1/L^2), and connect these frequencies to geometrical features of spherical photon orbits in Kerr spacetime. Chapter 11 focuses mainly on near-extremal Kerr black holes, we discuss a bifurcation in their QNM spectra for certain ranges of (l,m) (the angular quantum numbers) as a/M → 1. With tools prepared in Chapter 9 and 10, in Chapter 11 we obtain an analytical approximate for the scalar Green function in Kerr spacetime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear weak interaction rates, including electron and positron emission rates, and continuum electron and positron capture rates , as well as the associated v and –/v energy loss rates are calculated on a detailed grid of temperature and density for the free nucleons and 226 nuclei with masses between A = 21 and 60. Gamow-Teller and Fermi discrete-state transition matrix element systematics and the Gamow-Teller T^< →/← T^> resonance transitions are discussed in depth and are implemented in the stellar rate calculations. Results of the calculations are presented on an abbreviated grid of temperature and density and comparison is made to terrestrial weak transition rates where possible. Neutron shell blocking of allowed electron capture on heavy nuclei during stellar core collapse is discussed along with several unblocking mechanisms operative at high temperature and density. The results of one-zone collapse calculations are presented which suggest that the effect of neutron shell blocking is to produce a larger core lepton fraction at neutrino trapping which leads to a larger inner-core mass and hence a stronger post-bounce shock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is divided into two independent papers.

PAPER 1.

Spall velocities were measured for nine experimental impacts into San Marcos gabbro targets. Impact velocities ranged from 1 to 6.5 km/sec. Projectiles were iron, aluminum, lead, and basalt of varying sizes. The projectile masses ranged from a 4 g lead bullet to a 0.04 g aluminum sphere. The velocities of fragments were measured from high-speed films taken of the events. The maximum spall velocity observed was 30 m/sec, or 0.56 percent of the 5.4 km/sec impact velocity. The measured velocities were compared to the spall velocities predicted by the spallation model of Melosh (1984). The compatibility between the spallation model for large planetary impacts and the results of these small scale experiments are considered in detail.

The targets were also bisected to observe the pattern of internal fractures. A series of fractures were observed, whose location coincided with the boundary between rock subjected to the peak shock compression and a theoretical "near surface zone" predicted by the spallation model. Thus, between this boundary and the free surface, the target material should receive reduced levels of compressive stress as compared to the more highly shocked region below.

PAPER 2.

Carbonate samples from the nuclear explosion crater, OAK, and a terrestrial impact crater, Meteor Crater, were analyzed for shock damage using electron para- magnetic resonance, EPR. The first series of samples for OAK Crater were obtained from six boreholes within the crater, and the second series were ejecta samples recovered from the crater floor. The degree of shock damage in the carbonate material was assessed by comparing the sample spectra to spectra of Solenhofen limestone, which had been shocked to known pressures.

The results of the OAK borehole analysis have identified a thin zone of highly shocked carbonate material underneath the crater floor. This zone has a maximum depth of approximately 200 ft below sea floor at the ground zero borehole and decreases in depth towards the crater rim. A layer of highly shocked material is also found on the surface in the vicinity of the reference bolehole, located outside the crater. This material could represent a fallout layer. The ejecta samples have experienced a range of shock pressures.

It was also demonstrated that the EPR technique is feasible for the study of terrestrial impact craters formed in carbonate bedrock. The results for the Meteor Crater analysis suggest a slight degree of shock damage present in the β member of the Kaibab Formation exposed in the crater walls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sources and effects of astrophysical gravitational radiation are explained briefly to motivate discussion of the Caltech 40 meter antenna, which employs laser interferometry to monitor proper distances between inertial test masses. Practical considerations in construction of the apparatus are described. Redesign of test mass systems has resulted in a reduction of noise from internal mass vibrations by up to two orders of magnitude at some frequencies. A laser frequency stabilization system was developed which corrects the frequency of an argon ion laser to a residual fluctuation level bounded by the spectral density √s_v(f) ≤ 60µHz/√Hz, at fluctuation frequencies near 1.2 kHz. These and other improvements have contributed to reducing the spectral density of equivalent gravitational wave strain noise to √s_h(f)≈10^(-19)/√ Hz at these frequencies.

Finally, observations made with the antenna in February and March of 1987 are described. Kilohertz-band gravitational waves produced by the remnant of the recent supernova are shown to be theoretically unlikely at the strength required for confident detection in this antenna (then operating at poorer sensitivity than that quoted above). A search for periodic waves in the recorded data, comprising Fourier analysis of four 105-second samples of the antenna strain signal, was used to place new upper limits on periodic gravitational radiation at frequencies between 305 Hz and 5 kHz. In particular, continuous waves of any polarization are ruled out above strain amplitudes of 1.2 x 10^(-18) R.M.S. for waves emanating from the direction of the supernova, and 6.2 x 10^(-19) R.M.S. for waves emanating from the galactic center, between 1.5 and 4 kilohertz. Between 305 Hz and 5kHz no strains greater than 1.2 x 10^(-17) R.M.S. were detected from either direction. Limitations of the analysis and potential improvements are discussed, as are prospects for future searches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a study of the dynamical stability of nascent neutron stars resulting from the accretion induced collapse of rapidly rotating white dwarfs.

Chapter 2 and part of Chapter 3 study the equilibrium models for these neutron stars. They are constructed by assuming that the neutron stars have the same masses, angular momenta, and specific angular momentum distributions as the pre-collapse white dwarfs. If the pre-collapse white dwarf is rapidly rotating, the collapsed object will contain a high density central core of size about 20 km, surrounded by a massive accretion torus extending to hundreds of kilometers from the rotation axis. The ratio of the rotational kinetic energy to gravitational binding energy, β, of these neutron stars is all found to be less than 0.27.

Chapter 3 studies the dynamical stability of these neutron stars by numerically evolving the linearized hydrodynamical equations. A dynamical bar-mode instability is observed when the β of the star is greater than the critical value βd ≈ 0.25. It is expected that the unstable mode will persist until a substantial amount of angular momentum is carried away by gravitational radiation. The detectability of these sources is studied and it is estimated that LIGO II is unlikely to detect them unless the event rate is greater than 10-6/year/galaxy.

All the calculations on the structure and stability of the neutron stars in Chapters 2 and 3 are carried out using Newtonian hydrodynamics and gravity. Chapter 4 studies the relativistic effects on the structure of these neutron stars. New techniques are developed and used to construct neutron star models to the first post-Newtonian (1PN) order. The structures of the 1PN models are qualitatively similar to the corresponding Newtonian models, but the values of β are somewhat smaller. The maximum β for these 1PN neutron stars is found to be 0.24, which is 8% smaller than the Newtonian result (0.26). However, relativistic effects will also change the critical value βd. A detailed post-Newtonian stability analysis has yet to be carried out to study the relativistic effects on the dynamical stability of these neutron stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The LIGO and Virgo gravitational-wave observatories are complex and extremely sensitive strain detectors that can be used to search for a wide variety of gravitational waves from astrophysical and cosmological sources. In this thesis, I motivate the search for the gravitational wave signals from coalescing black hole binary systems with total mass between 25 and 100 solar masses. The mechanisms for formation of such systems are not well-understood, and we do not have many observational constraints on the parameters that guide the formation scenarios. Detection of gravitational waves from such systems — or, in the absence of detection, the tightening of upper limits on the rate of such coalescences — will provide valuable information that can inform the astrophysics of the formation of these systems. I review the search for these systems and place upper limits on the rate of black hole binary coalescences with total mass between 25 and 100 solar masses. I then show how the sensitivity of this search can be improved by up to 40% by the the application of the multivariate statistical classifier known as a random forest of bagged decision trees to more effectively discriminate between signal and non-Gaussian instrumental noise. I also discuss the use of this classifier in the search for the ringdown signal from the merger of two black holes with total mass between 50 and 450 solar masses and present upper limits. I also apply multivariate statistical classifiers to the problem of quantifying the non-Gaussianity of LIGO data. Despite these improvements, no gravitational-wave signals have been detected in LIGO data so far. However, the use of multivariate statistical classification can significantly improve the sensitivity of the Advanced LIGO detectors to such signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I. Foehn winds of southern California.
An investigation of the hot, dry and dust laden winds occurring in the late fall and early winter in the Los Angeles Basin and attributed in the past to the influences of the desert regions to the north revealed that these currents were of a foehn nature. Their properties were found to be entirely due to dynamical heating produced in the descent from the high level areas in the interior to the lower Los Angeles Basin. Any dust associated with the phenomenon was found to be acquired from the Los Angeles area rather than transported from the desert. It was found that the frequency of occurrence of a mild type foehn of this nature during this season was sufficient to warrant its classification as a winter monsoon. This results from the topography of the Los Angeles region which allows an easy entrance to the air from the interior by virtue of the low level mountain passes north of the area. This monsoon provides the mild winter climate of southern California since temperatures associated with the foehn currents are far higher than those experienced when maritime air from the adjacent Pacific Ocean occupies the region.

II. Foehn wind cyclo-genesis.
Intense anticyclones frequently build up over the high level regions of the Great Basin and Columbia Plateau which lie between the Sierra Nevada and Cascade Mountains to the west and the Rocky Mountains to the east. The outflow from these anticyclones produce extensive foehns east of the Rockies in the comparatively low level areas of the middle west and the Canadian provinces of Alberta and Saskatchewan. Normally at this season of the year very cold polar continental air masses are present over this territory and with the occurrence of these foehns marked discontinuity surfaces arise between the warm foehn current, which is obliged to slide over a colder mass, and the Pc air to the east. Cyclones are easily produced from this phenomenon and take the form of unstable waves which propagate along the discontinuity surface between the two dissimilar masses. A continual series of such cyclones was found to occur as long as the Great Basin anticyclone is maintained with undiminished intensity.

III. Weather conditions associated with the Akron disaster.
This situation illustrates the speedy development and propagation of young disturbances in the eastern United States during the spring of the year under the influence of the conditionally unstable tropical maritime air masses which characterise the region. It also furnishes an excellent example of the superiority of air mass and frontal methods of weather prediction for aircraft operation over the older methods based upon pressure distribution.

IV. The Los Angeles storm of December 30, 1933 to January 1, 1934.
This discussion points out some of the fundamental interactions occurring between air masses of the North Pacific Ocean in connection with Pacific Coast storms and the value of topographic and aerological considerations in predicting them. Estimates of rainfall intensity and duration from analyses of this type may be made and would prove very valuable in the Los Angeles area in connection with flood control problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planetary atmospheres exist in a seemingly endless variety of physical and chemical environments. There are an equally diverse number of methods by which we can study and characterize atmospheric composition. In order to better understand the fundamental chemistry and physical processes underlying all planetary atmospheres, my research of the past four years has focused on two distinct topics. First, I focused on the data analysis and spectral retrieval of observations obtained by the Ultraviolet Imaging Spectrograph (UVIS) instrument onboard the Cassini spacecraft while in orbit around Saturn. These observations consisted of stellar occultation measurements of Titan's upper atmosphere, probing the chemical composition in the region 300 to 1500 km above Titan's surface. I examined the relative abundances of Titan's two most prevalent chemical species, nitrogen and methane. I also focused on the aerosols that are formed through chemistry involving these two major species, and determined the vertical profiles of aerosol particles as a function of time and latitude. Moving beyond our own solar system, my second topic of investigation involved analysis of infra-red light curves from the Spitzer space telescope, obtained as it measured the light from stars hosting planets of their own. I focused on both transit and eclipse modeling during Spitzer data reduction and analysis. In my initial work, I utilized the data to search for transits of planets a few Earth masses in size. In more recent research, I analyzed secondary eclipses of three exoplanets and constrained the range of possible temperatures and compositions of their atmospheres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this investigation was to determine whether landslides could be predicted for hill slopes of known inclinations from data secured by laboratory tests performed on samples of the ground under consideration. Specifically, the investigation was to show whether a correlation existed between experimentally determined values for friction and cohesion of ground and calculated values based upon the configuration of earth masses that had slid. The ability to determine the stability of slopes from experimental data is of obvious significance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Pacoima area is located on an isolated hill in the northeast section of the San Fernando, the northeast portion of the Pacoima Quadrangle, Los Angeles County, California. Within it are exposed more than 2300 feet of Tertiary rocks, which comprise three units of Middle Miocene (?) age, and approximately 950 feet of Jurassic (?) granite basement. The formations are characterized by their mode of occurrence, marine and terrestial origin, diverse lithology, and structural features.

The basement complex is composed of intrusive granite, small masses of granodiorite and a granodiorite gneiss with the development of schistosity in sections. During the long period of erosion of the metamorphics, the granitic rocks were exposed and may have provided clastic constituents for the overlying formations.

As a result of rapid sedimentation in a transitional environment, the Middle Miocene Twin Peaks formation was laid down unconformably on the granite. This formation is essentially a large thinning bed of gray to buff pebble and cobble conglomerate grading to coarse yellow sandstone. The contact of conglomerate and granite is characterized by its faulted and depositional nature.

Beds of extrusive andesite, basalt porphyry, compact vesicular amygdaloidal basalts, andesite breccia, interbedded feldspathic sands and clays of terrestial origin, and mudflow breccia comprise the Pacoima formation which overlies the Twin Peaks formation unconformably. A transgressing shallow sea accompanied settling of the region and initiated deposition of fine clastic sediments.

The marine Topanga (?) formation is composed of brown to gray coarse sandstone grading into interbedded buff sandstones and gray shales. Intrusions of rhyolitedacite and ash beds mark continued but sporatic volcanism during this period.

The area mapped represents an arch in the Tertiary sediments. Forces that produced the uplift of the granite structural high created stresses that were relieved by jointing and faulting. Vertical and horizontal movement along these faults has displaced beds, offset contacts and complicated their structure. Uplift and erosion have exposed the present sequence of beds which dip gently to the northeast. The isolated hill is believed to be in an early stage of maturity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lowest T = 2 states have been identified and studied in the nuclei 12C, 12B, 20F and and 28Al. The first two of these were produced in the reactions 14C(p,t)12C and 14C (p,3He)12B, at 50.5 and 63.4 MeV incident proton energy respectively, at the Oak Ridge National Laboratory. The T = 2 states in 20F and 28Al were observed in (3He,p) reactions at 12-MeV incident energy, with the Caltech Tandem accelerator.

The results for the four nuclei studied are summarized below:

(1) 12C: the lowest T = 2 state was located at an excitation energy of 27595 ± 20 keV, and has a width less than 35 keV.

(2) 12B: the lowest T = 2 state was found at an excitation energy of 12710 ± 20 keV. The width was determined to be less than 54 keV and the spin and parity were confirmed to be 0+. A second 12B state (or doublet) was observed at an excitation energy of 14860 ± 30 keV with a width (if the group corresponds to a single state) of 226 ± 30 keV.

(3) 20F: the lowest T = 2 state was observed at an excitation of 6513 ± 5 keV; the spin and parity were confirmed to be 0+. A second state, tentatively identified as T = 2 from the level spacing, was located at 8210 ± 6 keV.

(4) 28Al: the lowest T = 2 state was identified at an excitation of 5997 ± 6 keV; the spin and parity were confirmed to be 0+. A second state at an excitation energy of 7491 ± 11 keV is tentatively identified as T = 2, with a corresponding (tentative) spin and parity assignment Jπ = 2+.

The results of the present work and the other known masses of T = 2 states and nuclei for 8 ≤ A ≤ 28 are summarized, and massequation coefficients have been extracted for these multiplets. These coefficients were compared with those from T = 1 multiplets, and then used to predict the mass and stability of each of the unobserved members of the T = 2 multiplets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assembly history of massive galaxies is one of the most important aspects of galaxy formation and evolution. Although we have a broad idea of what physical processes govern the early phases of galaxy evolution, there are still many open questions. In this thesis I demonstrate the crucial role that spectroscopy can play in a physical understanding of galaxy evolution. I present deep near-infrared spectroscopy for a sample of high-redshift galaxies, from which I derive important physical properties and their evolution with cosmic time. I take advantage of the recent arrival of efficient near-infrared detectors to target the rest-frame optical spectra of z > 1 galaxies, from which many physical quantities can be derived. After illustrating the applications of near-infrared deep spectroscopy with a study of star-forming galaxies, I focus on the evolution of massive quiescent systems.

Most of this thesis is based on two samples collected at the W. M. Keck Observatory that represent a significant step forward in the spectroscopic study of z > 1 quiescent galaxies. All previous spectroscopic samples at this redshift were either limited to a few objects, or much shallower in terms of depth. Our first sample is composed of 56 quiescent galaxies at 1 < z < 1.6 collected using the upgraded red arm of the Low Resolution Imaging Spectrometer (LRIS). The second consists of 24 deep spectra of 1.5 < z < 2.5 quiescent objects observed with the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE). Together, these spectra span the critical epoch 1 < z < 2.5, where most of the red sequence is formed, and where the sizes of quiescent systems are observed to increase significantly.

We measure stellar velocity dispersions and dynamical masses for the largest number of z > 1 quiescent galaxies to date. By assuming that the velocity dispersion of a massive galaxy does not change throughout its lifetime, as suggested by theoretical studies, we match galaxies in the local universe with their high-redshift progenitors. This allows us to derive the physical growth in mass and size experienced by individual systems, which represents a substantial advance over photometric inferences based on the overall galaxy population. We find a significant physical growth among quiescent galaxies over 0 < z < 2.5 and, by comparing the slope of growth in the mass-size plane dlogRe/dlogM with the results of numerical simulations, we can constrain the physical process responsible for the evolution. Our results show that the slope of growth becomes steeper at higher redshifts, yet is broadly consistent with minor mergers being the main process by which individual objects evolve in mass and size.

By fitting stellar population models to the observed spectroscopy and photometry we derive reliable ages and other stellar population properties. We show that the addition of the spectroscopic data helps break the degeneracy between age and dust extinction, and yields significantly more robust results compared to fitting models to the photometry alone. We detect a clear relation between size and age, where larger galaxies are younger. Therefore, over time the average size of the quiescent population will increase because of the contribution of large galaxies recently arrived to the red sequence. This effect, called progenitor bias, is different from the physical size growth discussed above, but represents another contribution to the observed difference between the typical sizes of low- and high-redshift quiescent galaxies. By reconstructing the evolution of the red sequence starting at z ∼ 1.25 and using our stellar population histories to infer the past behavior to z ∼ 2, we demonstrate that progenitor bias accounts for only half of the observed growth of the population. The remaining size evolution must be due to physical growth of individual systems, in agreement with our dynamical study.

Finally, we use the stellar population properties to explore the earliest periods which led to the formation of massive quiescent galaxies. We find tentative evidence for two channels of star formation quenching, which suggests the existence of two independent physical mechanisms. We also detect a mass downsizing, where more massive galaxies form at higher redshift, and then evolve passively. By analyzing in depth the star formation history of the brightest object at z > 2 in our sample, we are able to put constraints on the quenching timescale and on the properties of its progenitor.

A consistent picture emerges from our analyses: massive galaxies form at very early epochs, are quenched on short timescales, and then evolve passively. The evolution is passive in the sense that no new stars are formed, but significant mass and size growth is achieved by accreting smaller, gas-poor systems. At the same time the population of quiescent galaxies grows in number due to the quenching of larger star-forming galaxies. This picture is in agreement with other observational studies, such as measurements of the merger rate and analyses of galaxy evolution at fixed number density.