610 resultados para Lehtinen, Tapani: Kieliopillistuminen
Resumo:
Twitter on internetissä toimiva lyhytviestipalvelu, joka voidaan lukea osaksi sosiaalista mediaa. Sen käyttäjät voivat julkaista korkeintaan 140 merkin mittaisia viestejä, eli twiittejä, sekä lukea, jakaa ja kommentoida toisten käyttäjien lähettämiä twiittejä. Palvelun piirissä lähetetään tätä kirjoitettaessa kymmeniä tuhansia suomenkielisiä twiittejä päivittäin. Twiitit koskevat usein ajankohtaisia aiheita ja tapahtumia. Tässä tutkimuksessa haetaan vastausta siihen, toteutuuko Twitterissä käytävässä eduskuntavaaliaiheisessa keskustelussa aggregatiivisen, deliberatiivisen tai agonistisen demokratiakäsityksen piirteitä. Normatiivisten demokratiateorioiden operationalisoinnnissa tutkielmassa on käytetty erityisesti Raphael Kiesin deliberatiivisen demokratian operationalisointikehikkoa sekä Lincoln Dahlbergin digitaalisen demokratian positiomallia. Aineistona on Twitterin tietokannasta vuoden 2015 eduskuntavaalien alla suodatettu ja kerätty kokoelma twiittejä (n=870), jotka muodostavat yhteensä 25 kokonaista keskustelua. Analyysimenetelminä on käytetty laadullista, teoriaohjaavaa sisällönanalyysiä sekä kuvailevia kvantitatiivisia menetelmiä. Analyysin johtopäätöksenä voidaan todeta, että kaikkien edellä mainittujen demokratiateorioiden mukaisia piirteitä oli havaittavissa tutkituista keskusteluketjuista. Kokonaisuutena aineistosta havaitut vuorovaikutuksen piirteet muodostavat kuvan keskustelukulttuurista, joka muistuttaa käsitellyistä demokratiaihanteista eniten aggregatiivista, liberaalia demokratiaa. Mainittua normatiivista demokratiakäsitystä tukevat myös Twitterin asettama 140 merkin yläraja viestien pituudelle sekä Twitterin tämän tutkielman kirjoitusvaiheessa julkaisema äänestystoiminto. Merkillepantava huomio on myös se, että osallistujien välistä näkyvää vuorovaikutusta esiintyy Twitterissä vähän suhteessa twiittien kokonaisvolyymiin.
Resumo:
This thesis was conducted on assignment by a multinational chemical corporation as a case study. The purpose of this study is to find ways to improve the purchasing process for small purchases at the case company. The improvements looked after are mainly cost and time savings. Purchasing process is the process that starts from the requisition of goods or services and ends when the invoice is paid. In this thesis the purchases with value less than 1000€ are considered to be small. The theoretical framework of the thesis consists of general theoretical view of costs and performance of the purchasing process, different types of purchasing processes and a model for improving purchasing processes. The categorization to small and large purchases is the most important followed by the division between direct and indirect purchases. Also models that provide more strategic perspective for categorization were found to be useful. Auditing and managerial control are important parts of the purchasing process. When considering the transaction costs of purchasing from the costs–benefits perspective large and small purchases should not have the same processes. Purchasing cards, e-procurement and vendor managed inventory are seen as an alternative to the traditional purchasing process. The empirical data collection was done by interviewing the company employees that take part of the purchasing process in their daily work. The interviews had open-ended questions and the answers were coded and analyzed. The results consist of process description and assessment as well as suggestions for potential improvements. At the case company the basic purchasing process was similar to the traditional purchasing process that is entirely done with computers and online. For some categories there was already more sophisticated e-procurement solutions in use. To improve the current e-procurement based solutions elimination of authorization workflow and better information exchange can be seen as potential improvements for most of the case purchases. Purchasing cards and a lightweight form of vendor managed inventory can be seen as potential improvements for some categories. Implementing the changes incurs at least some cost and the benefits might be hard to measure. This thesis has revealed that the small purchases have potential for significant cost and time savings at the case company.
Resumo:
The Finnish Meteorological Institute, in collaboration with the University of Helsinki, has established a new ground-based remote-sensing network in Finland. The network consists of five topographically, ecologically and climatically different sites distributed from southern to northern Finland. The main goal of the network is to monitor air pollution and boundary layer properties in near real time, with a Doppler lidar and ceilometer at each site. In addition to these operational tasks, two sites are members of the Aerosols, Clouds and Trace gases Research InfraStructure Network (ACTRIS); a Ka band cloud radar at Sodankylä will provide cloud retrievals within CloudNet, and a multi-wavelength Raman lidar, PollyXT (POrtabLe Lidar sYstem eXTended), in Kuopio provides optical and microphysical aerosol properties through EARLINET (the European Aerosol Research Lidar Network). Three C-band weather radars are located in the Helsinki metropolitan area and are deployed for operational and research applications. We performed two inter-comparison campaigns to investigate the Doppler lidar performance, compare the backscatter signal and wind profiles, and to optimize the lidar sensitivity through adjusting the telescope focus length and data-integration time to ensure sufficient signal-to-noise ratio (SNR) in low-aerosol-content environments. In terms of statistical characterization, the wind-profile comparison showed good agreement between different lidars. Initially, there was a discrepancy in the SNR and attenuated backscatter coefficient profiles which arose from an incorrectly reported telescope focus setting from one instrument, together with the need to calibrate. After diagnosing the true telescope focus length, calculating a new attenuated backscatter coefficient profile with the new telescope function and taking into account calibration, the resulting attenuated backscatter profiles all showed good agreement with each other. It was thought that harsh Finnish winters could pose problems, but, due to the built-in heating systems, low ambient temperatures had no, or only a minor, impact on the lidar operation – including scanning-head motion. However, accumulation of snow and ice on the lens has been observed, which can lead to the formation of a water/ice layer thus attenuating the signal inconsistently. Thus, care must be taken to ensure continuous snow removal.
Resumo:
Zwitterionic peptides with trypanocidal activity are promising lead compounds for the treatment of African Sleeping Sickness, and have motivated research into the design of compounds capable of disrupting the protozoan membrane. In this study, we use the Langmuir monolayer technique to investigate the surface properties of an antiparasitic peptide, namely S-(2,4-dinitrophenyl)glutathione di-2-propyl ester, and its interaction with a model membrane comprising a phospholipid monolayer. The drug formed stable Langmuir monolayers. whose main feature was a phase transition accompanied by a negative surface elasticity. This was attributed to aggregation upon compression due to intermolecular bond associations of the molecules, inferred from surface pressure and surface potential isotherms. Brewster angle microscopy (BAM) images, infrared spectroscopy and dynamic elasticity measurements. When co-spread with dipalmitoyl phosphatidyl choline (DPPC). the drug affected both the surface pressure and the monolayer morphology, even at high surface pressures and with low amounts of the drug. The results were interpreted by assuming a repulsive, cooperative interaction between the drug and DPPC molecules. Such repulsive interaction and the large changes in fluidity arising from drug aggregation may be related to the disruption of the membrane, which is key for the parasite killing property. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The polysaccharide chitosan has been largely used in many biological applications as a fat and cholesterol reducer, bactericide agent, and wound healing material. While the efficacy for some of such uses is proven, little is known about the molecular-level interactions involved in these applications. In this study, we employ mixed Langmuir and Langmuir-Blodgett (LB) films of negatively charged dimyristoyl phosphatidic acid (DMPA) anti cholesterol as cell membrane models to investigate the role of cholesterol in the molecular-level action of chitosan. Chitosan does not remove cholesterol froth the monolayer. The interaction with chitosan tends to expand the DMPA monolayer due to its interpenetration within the film. On the other hand, cholesterol induces condensation of the DMPA monolayer. The competing effects cause the surface pressure isotherms of mixed DMPA-cholesterol films on a chitosan subphase to be unaffected by the cholesterol mole fraction, due to distinct degrees of chitosan penetration into the film in the presence of cholesterol. By combining polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and sum-frequency generation spectroscopy (SFG), we showed that chitosan induces order into negatively charged phospholipid layers, whereas the opposite occurs for cholesterol. In conclusion, chitosan has its penetration in the film modulated by cholesterol, and electrostatic interactions with negatively charged phospholipids, such as DMPA, are crucial for the action of chitosan.
Resumo:
Enzyme immobilization in nanostructured films may be useful for a number of biomimetic systems, particularly if suitable matrixes are identified. Here we show that alcohol dehydrogenase (ADH) has high affinity toward a negatively charged phospholipid, dimyristoylphosphatidic acid (DMPA), which forms a Langmuir monolayer at an air-water interface. Incorporation of ADH into the DMPA monolayer was monitored with Surface pressure measurements; and polarization-modulation infrared reflection absorption spectroscopy, with the alpha-helices from ADH being mainly oriented parallel to the water surface. ADH remained at the interface even at high surface pressures, thus allowing deposition of Langmuir-Blodgett (LB) films from the DMPA-ADH film. Indeed, interaction with DMPA enhances the transfer of ADH, where the mass transferred onto a solid support increased from 134 ng for ADH on a Gibbs monolayer to 178 ng for an LB film with DMPA. With fluorescence spectroscopy it was possible to confirm that the ADH structure was preserved even after one month of the LB deposition. ADH-containing films deposited onto gold-interdigitated electrodes were employed in a sensor array capable of detecting ethanol at concentrations down to 10 ppb (in volume), using impedance spectroscopy as the method of detection.
Resumo:
The immobilization of enzymes in nanostructured films has potential applications, e.g. in biosensing, for which the activity may not only be preserved, but also enhanced if optimized conditions are identified. Optimization is not straightforward because several requirements must be fulfilled, including a suitable matrix and film-forming technique. In this study, we show that horseradish peroxidase (HRP) has its activity enhanced when immobilized in Langmuir-Blodgett (LB) films, in conjunction with dipalmitoylphosphaticlylglycerol (DPPG). Incorporation of HRP into a DPPG monolayer at the air-water interface was demonstrated with compression isotherms, and Polarization-Modulation Infrared Reflection Absorption Spectroscopy (PM-IRRAS). From the PM-IRRAS data, we inferred that HRP was not denatured when adsorbed on a pre-formed, low pressure DPPG monolayer. A change in orientation was induced by the phospholipid matrix, with the amide C=O and NH groups from HRP being oriented perpendicular to the surface, parallel to the DPPG acyl chains, i.e. the alpha-helix was inserted into the monolayer. The mixed DPPG-HRP monolayer could be transferred onto solid supports, to which HRP activity was ca. 23% higher than in solution. The control of molecular architecture and choice of a suitable phospholipid matrix allowed HRP-containing LB films to be used in sensing peroxide. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Many chitosan biological activities depend on the interaction with biomembranes, but so far it has not been possible to obtain molecular-level evidence of chitosan action. In this article, we employ Langmuir phospholipid monolayers as cell membrane models and show that chitosan is able to remove beta-lactoglobulin (BLG) from negatively charged dimyristoyl phosphatidic acid (DMPA) and dipalmitoyl phosphatidyl glycerol (DPPG). This was shown with surface pressure isotherms and elasticity and PM-IRRAS measurements in the Langmuir monolayers, in addition to quartz crystal microbalance and fluorescence spectroscopy measurements for Langmuir-Blodgett (LB) films transferred onto solid substrates. Some specificity was noted in the removal action because chitosan was unable to remove BLG incorporated into neutral dipalmitoyl phosphatidyl choline (DPPC) and cholesterol monolayers and had no effect on horseradish peroxidase and urease interacting with DMPA. An obvious biological implication of these findings is to offer reasons that chitosan can remove BLG from lipophilic environments, as reported in the recent literature.
Resumo:
This dissertation presents and discusses the preparation of molecular wires (MW) candidates that would then be probed for electron transfer properties. These wires are bridged by 1,4-diethynylbenzene derivatives with alkoxy side chains with palladium and ruthenium metal complex termini. Characterization of these compounds was performed by usual spectroscopic techniques like 1H, 13C{1H} and 31P{1H} NMR, MS, FTIR and UV-Vis as well as by cyclic voltammetry which allowed classifying the candidates in the Robin–Day system and determination of bridges side chain and length effects on electronic transport. Preparation of the 1,4-diethynylbenzene derivatives was done with synthetic pathways that relied heavily in palladium catalyzed cross-couplings (Sonogashira). A family of single ringed 1,4-diethynylbenzene ligands with different length alkoxy side chains (OCH3, OC2H5, OC7H15) was thus prepared allowing for the influence of these ring decorations to be assessed. The ruthenium binuclear rods showed communication between metal centres only when the shorter ligands were used whereas the longer Ru complexes showed only one redox pair in CV studies which is in agreement to non-communicating metal centres. Cyclic voltammetry studies show irreversible one wave processes for palladium dinuclear complexes, making these rods function as molecular insulators. Fluorescence decay studies performed on the prepared compounds (ligands and complexes) show a pattern of decreasing decay times upon coordination to the metal centres which can due to ligand charge redistribution upon coordination leading to non-radiative relaxation paths. Regarding the X-ray structures, two new ligand related structures were obtained as well as new structure for a palladium rod. The effect of the side chains was observed to be important to the wires’ electronic properties when comparing with the analogues without a side chain. The effect brought by longer chains is nevertheless almost negligible.
Resumo:
BACKGROUND: Variants in the complement cascade genes and the LOC387715/HTRA1, have been widely reported to associate with age-related macular degeneration (AMD), the most common cause of visual impairment in industrialized countries. METHODS/PRINCIPAL FINDINGS: We investigated the association between the LOC387715 A69S and complement component C3 R102G risk alleles in the Finnish case-control material and found a significant association with both variants (OR 2.98, p = 3.75 x 10(-9); non-AMD controls and OR 2.79, p = 2.78 x 10(-19), blood donor controls and OR 1.83, p = 0.008; non-AMD controls and OR 1.39, p = 0.039; blood donor controls), respectively. Previously, we have shown a strong association between complement factor H (CFH) Y402H and AMD in the Finnish population. A carrier of at least one risk allele in each of the three susceptibility loci (LOC387715, C3, CFH) had an 18-fold risk of AMD when compared to a non-carrier homozygote in all three loci. A tentative gene-gene interaction between the two major AMD-associated loci, LOC387715 and CFH, was found in this study using a multiplicative (logistic regression) model, a synergy index (departure-from-additivity model) and the mutual information method (MI), suggesting that a common causative pathway may exist for these genes. Smoking (ever vs. never) exerted an extra risk for AMD, but somewhat surprisingly, only in connection with other factors such as sex and the C3 genotype. Population attributable risks (PAR) for the CFH, LOC387715 and C3 variants were 58.2%, 51.4% and 5.8%, respectively, the summary PAR for the three variants being 65.4%. CONCLUSIONS/SIGNIFICANCE: Evidence for gene-gene interaction between two major AMD associated loci CFH and LOC387715 was obtained using three methods, logistic regression, a synergy index and the mutual information (MI) index.
Resumo:
BACKGROUND Dimethyl sulfoxide (DMSO) is essential for the preservation of liquid nitrogen-frozen stem cells, but is associated with toxicity in the transplant recipient. STUDY DESIGN AND METHODS In this prospective noninterventional study, we describe the use of DMSO in 64 European Blood and Marrow Transplant Group centers undertaking autologous transplantation on patients with myeloma and lymphoma and analyze side effects after return of DMSO-preserved stem cells. RESULTS While the majority of centers continue to use 10% DMSO, a significant proportion either use lower concentrations, mostly 5 or 7.5%, or wash cells before infusion (some for selected patients only). In contrast, the median dose of DMSO given (20 mL) was much less than the upper limit set by the same institutions (70 mL). In an accompanying statistical analysis of side effects noted after return of DMSO-preserved stem cells, we show that patients in the highest quartile receiving DMSO (mL and mL/kg body weight) had significantly more side effects attributed to DMSO, although this effect was not observed if DMSO was calculated as mL/min. Dividing the myeloma and lymphoma patients each into two equal groups by age we were able to confirm this result in all but young myeloma patients in whom an inversion of the odds ratio was seen, possibly related to the higher dose of melphalan received by young myeloma patients. CONCLUSION We suggest better standardization of preservation method with reduced DMSO concentration and attention to the dose of DMSO received by patients could help reduce the toxicity and morbidity of the transplant procedure.
Resumo:
We present a generalized framework for gradient-domain Metropolis rendering, and introduce three techniques to reduce sampling artifacts and variance. The first one is a heuristic weighting strategy that combines several sampling techniques to avoid outliers. The second one is an improved mapping to generate offset paths required for computing gradients. Here we leverage the properties of manifold walks in path space to cancel out singularities. Finally, the third technique introduces generalized screen space gradient kernels. This approach aligns the gradient kernels with image structures such as texture edges and geometric discontinuities to obtain sparser gradients than with the conventional gradient kernel. We implement our framework on top of an existing Metropolis sampler, and we demonstrate significant improvements in visual and numerical quality of our results compared to previous work.
Resumo:
We introduce gradient-domain rendering for Monte Carlo image synthesis.While previous gradient-domain Metropolis Light Transport sought to distribute more samples in areas of high gradients, we show, in contrast, that estimating image gradients is also possible using standard (non-Metropolis) Monte Carlo algorithms, and furthermore, that even without changing the sample distribution, this often leads to significant error reduction. This broadens the applicability of gradient rendering considerably. To gain insight into the conditions under which gradient-domain sampling is beneficial, we present a frequency analysis that compares Monte Carlo sampling of gradients followed by Poisson reconstruction to traditional Monte Carlo sampling. Finally, we describe Gradient-Domain Path Tracing (G-PT), a relatively simple modification of the standard path tracing algorithm that can yield far superior results.
Resumo:
Monte Carlo integration is firmly established as the basis for most practical realistic image synthesis algorithms because of its flexibility and generality. However, the visual quality of rendered images often suffers from estimator variance, which appears as visually distracting noise. Adaptive sampling and reconstruction algorithms reduce variance by controlling the sampling density and aggregating samples in a reconstruction step, possibly over large image regions. In this paper we survey recent advances in this area. We distinguish between “a priori” methods that analyze the light transport equations and derive sampling rates and reconstruction filters from this analysis, and “a posteriori” methods that apply statistical techniques to sets of samples to drive the adaptive sampling and reconstruction process. They typically estimate the errors of several reconstruction filters, and select the best filter locally to minimize error. We discuss advantages and disadvantages of recent state-of-the-art techniques, and provide visual and quantitative comparisons. Some of these techniques are proving useful in real-world applications, and we aim to provide an overview for practitioners and researchers to assess these approaches. In addition, we discuss directions for potential further improvements.