Improved sampling for gradient-domain metropolis light transport


Autoria(s): Manzi, Marco; Rousselle, Fabrice; Kettunen, Markus; Lehtinen, Jaakko; Zwicker, Matthias
Data(s)

2014

Resumo

We present a generalized framework for gradient-domain Metropolis rendering, and introduce three techniques to reduce sampling artifacts and variance. The first one is a heuristic weighting strategy that combines several sampling techniques to avoid outliers. The second one is an improved mapping to generate offset paths required for computing gradients. Here we leverage the properties of manifold walks in path space to cancel out singularities. Finally, the third technique introduces generalized screen space gradient kernels. This approach aligns the gradient kernels with image structures such as texture edges and geometric discontinuities to obtain sparser gradients than with the conventional gradient kernel. We implement our framework on top of an existing Metropolis sampler, and we demonstrate significant improvements in visual and numerical quality of our results compared to previous work.

Formato

application/pdf

application/pdf

Identificador

http://boris.unibe.ch/63333/1/GMLT_SA14.pdf

http://boris.unibe.ch/63333/8/a178-manzi.pdf

Manzi, Marco; Rousselle, Fabrice; Kettunen, Markus; Lehtinen, Jaakko; Zwicker, Matthias (2014). Improved sampling for gradient-domain metropolis light transport. ACM transactions on graphics, 33(6), pp. 1-12. Association for Computing Machinery 10.1145/2661229.2661291 <http://dx.doi.org/10.1145/2661229.2661291>

doi:10.7892/boris.63333

info:doi:10.1145/2661229.2661291

urn:issn:0730-0301

Idioma(s)

eng

Publicador

Association for Computing Machinery

Relação

http://boris.unibe.ch/63333/

Direitos

info:eu-repo/semantics/openAccess

info:eu-repo/semantics/restrictedAccess

Fonte

Manzi, Marco; Rousselle, Fabrice; Kettunen, Markus; Lehtinen, Jaakko; Zwicker, Matthias (2014). Improved sampling for gradient-domain metropolis light transport. ACM transactions on graphics, 33(6), pp. 1-12. Association for Computing Machinery 10.1145/2661229.2661291 <http://dx.doi.org/10.1145/2661229.2661291>

Palavras-Chave #000 Computer science, knowledge & systems #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed