Gradient-domain Path Tracing


Autoria(s): Kettunen, Markus; Manzi, Marco; Aittala, Miika; Lehtinen, Jaakko; Durand, Frédo; Zwicker, Matthias
Data(s)

01/08/2015

Resumo

We introduce gradient-domain rendering for Monte Carlo image synthesis.While previous gradient-domain Metropolis Light Transport sought to distribute more samples in areas of high gradients, we show, in contrast, that estimating image gradients is also possible using standard (non-Metropolis) Monte Carlo algorithms, and furthermore, that even without changing the sample distribution, this often leads to significant error reduction. This broadens the applicability of gradient rendering considerably. To gain insight into the conditions under which gradient-domain sampling is beneficial, we present a frequency analysis that compares Monte Carlo sampling of gradients followed by Poisson reconstruction to traditional Monte Carlo sampling. Finally, we describe Gradient-Domain Path Tracing (G-PT), a relatively simple modification of the standard path tracing algorithm that can yield far superior results.

Formato

application/pdf

application/pdf

Identificador

http://boris.unibe.ch/81111/1/kettunen2015siggraph_paper.pdf

http://boris.unibe.ch/81111/8/a123-kettunen.pdf

Kettunen, Markus; Manzi, Marco; Aittala, Miika; Lehtinen, Jaakko; Durand, Frédo; Zwicker, Matthias (2015). Gradient-domain Path Tracing. ACM transactions on graphics, 34(4), 123:1-123:13. Association for Computing Machinery 10.1145/2766997 <http://dx.doi.org/10.1145/2766997>

doi:10.7892/boris.81111

info:doi:10.1145/2766997

urn:issn:0730-0301

Idioma(s)

eng

Publicador

Association for Computing Machinery

Relação

http://boris.unibe.ch/81111/

Direitos

info:eu-repo/semantics/openAccess

info:eu-repo/semantics/restrictedAccess

Fonte

Kettunen, Markus; Manzi, Marco; Aittala, Miika; Lehtinen, Jaakko; Durand, Frédo; Zwicker, Matthias (2015). Gradient-domain Path Tracing. ACM transactions on graphics, 34(4), 123:1-123:13. Association for Computing Machinery 10.1145/2766997 <http://dx.doi.org/10.1145/2766997>

Palavras-Chave #000 Computer science, knowledge & systems #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed