988 resultados para Interviewing - Technique
Resumo:
© 2014, Springer-Verlag London. Engineering changes are essential for any product development, and their management has become a crucial discipline. Research in engineering change management has brought about some methods and tools to support dealing with changes. This work extends the change prediction method through incorporation of a function–behaviour–structure (FBS) scheme. These additional levels of detail provide the rationales for change propagation and allow a more proactive management of changes. First, we develop the ontology of this method based on a comprehensive comparison of three seminal functional reasoning schemes. Then, we demonstrate the FBS Linkage technique by applying it to a diesel engine. Finally, we evaluate the method.
Resumo:
Mode radiation loss for microdisk resonators with pedestals is investigated by three-dimensional (3D) finite-difference time-domain (FDTD) technique. For the microdisk with a radius of 1 mu m, a thickness of 0.2 mu m, and a refractive index of 3.4, on a pedestal with a refractive index of 3.17, the mode quality (Q) factor of the whispering-gallery mode (WGM) quasi-TE7,1 first increases with the increase of the radius of the pedestal, and then quickly decreases as the radius is larger than 0.75 mu m. The mode radiation loss is mainly the vertical radiation loss induced by the mode coupling between the WGM and vertical radiation mode in the pedestal, instead of the scattering loss around the perimeter of the round pedestal. The WG M can keep the high Q factor when the mode coupling is forbidden.
Resumo:
An efficient fabrication scheme of buried ridge waveguide devices is demonstrated by UV-light imprinting technique using organic-in organic hybrid sol-gel Zr-doped SiO2 materials. The refractive indices of a guiding layer and a cladding layer for the buried ridge waveguide structure are 1.537 and 1.492 measured at 1550 nm, respectively. The tested results show more circular mode profiles clue to existence of the cladding layer. A buried ridge single-mode waveguide operating at 1550 nm has a low propagation loss (0.088 dB/cm) and the 1 x 2 MMI power splitter exhibits uniform outputs, with a very low splitting loss of 0.029 dB at 1549 nm.
Resumo:
The dependence of the electronic energy levels on the size of quantum dots (QDs) with the shape of spherical lens is studied by using the B-spline technique for the first time. Within the framework of the effective-mass theory, the values of electronic energy levels are obtained as a function of the height, radius and volume of QDs, respectively. When the height or radius of QDs increases, all the electronic energy levels lower, and the separations between the energy levels decrease. For lens-shape QDs, height is the key factor in dominating the energy levels comparing with the effect of radius, especially in dominating the ground-state level. These computational results are compared with that of other theoretical calculation ways. The B-spline technique is proved to be an effective way in calculating the electronic structure in QDs with the shape of spherical lens.
Resumo:
Electrically pumped, edge-emitting, singlemode operation of a two-dimensional photonic crystal distributed feedback (PCDFB) quantum cascade laser emitting at similar to 7.8 mu m is demonstrated. The two-beam holographic technique combined with wet-etching process is successfully used to de. ne a square-lattice PCDFB structure on the top grating layer of the laser. This simple PC fabrication method may open exciting opportunities for the wide application of PCDFB lasers.
Resumo:
The Pade approximation with Baker's algorithm is compared with the least-squares Prony method and the generalized pencil-of-functions (GPOF) method for calculating mode frequencies and mode Q factors for coupled optical microdisks by FDTD technique. Comparisons of intensity spectra and the corresponding mode frequencies and Q factors show that the Pade approximation can yield more stable results than the Prony and the GPOF methods, especially the intensity spectrum. The results of the Prony method and the GPOF method are greatly influenced by the selected number of resonant modes, which need to be optimized during the data processing, in addition to the length of the time response signal. Furthermore, the Pade approximation is applied to calculate light delay for embedded microring resonators from complex transmission spectra obtained by the Pade approximation from a FDTD output. The Prony and the GPOF methods cannot be applied to calculate the transmission spectra, because the transmission signal obtained by the FDTD simulation cannot be expressed as a sum of damped complex exponentials. (C) 2009 Optical Society of America
Resumo:
Silicon sheets from powder (SSP) ribbons have been prepared by modified SSP technique using electronic-grade (9N purity) silicon powder. The surface morphology, crystallographic quality, composition and electric properties of the SSP ribbons were investigated by surface profiler, X-ray diffraction (XRD), scanning electron microscopy (SEM), metallurgical microscope, Auger electron spectroscopy (AES) and four-point probe apparatus, respectively. The results show that the SSP ribbon made from electronic-grade silicon powder is a suitable candidate for the substrates of crystalline silicon thin film (CSiTF) solar cells, which could meet the primary requirements of CSiTF solar cell process on the substrates, including surface smoothness, crystallographic quality, purity and electric conductivity, etc. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A nondestructive selection technique for predicting ionizing radiation effects of commercial metal-oxide-semiconductor (MOS) devices has been put forward. The basic principle and application details of this technique have been discussed. Practical application for the 54HC04 and 54HC08 circuits has shown that the predicted radiation-sensitive parameters such as threshold voltage, static power supply current and radiation failure total dose are consistent with the experimental results obtained only by measuring original electrical parameters. It is important and necessary to choose suitable information parameters. This novel technique can be used for initial radiation selection of some commercial MOS devices.
Resumo:
The photon iterative numerical technique, which chooses the outputs of the amplified spontaneous emission spectrum and lasing mode as iteration variables to solve the rate equations, is proposed and applied to analyse the steady behaviour of conventional semiconductor optical amplifiers (SOAs) and gain-clamped semiconductor optical amplifiers (GCSOAs). Numerical results show that the photon iterative method is a much faster and more efficient algorithm than the conventional approach, which chooses the carrier density distribution of the SOAs as the iterative variable. It is also found that the photon iterative method has almost the same computing efficiency for conventional SOAs and GCSOAs.
Resumo:
A two-hot-boat chemical vapor deposition system was modified from a thermal evaporation equipment. This system has the advantage of high vacuum, rapid heating rate and temperature separately controlled boats for the source and samples. These are in favor of synthesizing compound semiconducting nano-materials. By the system, we have synthesized high-quality wurtzite single crystal GaN nanowires and nanotip triangle pyramids via an in-situ doping indium surfactant technique on Si and 3C-SiC epilayer/Si substrates. The products were analyzed by x-ray diffraction, field emission scanning electron microscopy, highresolution transmission electron microscopy, energy- dispersive x-ray spectroscopy, and photoluminescence measurements. The GaN nanotip triangle pyramids, synthesized with this novel method, have potential application in electronic/ photonic devices for field-emission and laser.
Realization of highly uniform self-assembled InAs quantum wires by the strain compensating technique
Resumo:
Self-assembled InAs quantum wires (QWRs) on InP(001) substrate have been grown by molecular-beam epitaxy, using a strain compensating technique. Atom force microscope, Transmission electron microscopy, and high-resolution x-ray diffraction are used to characterize their structural properties. We proposed that, by carefully adjusting composition of InAlGaAs buffer layer and strain compensating spacer layers, stacked QWRs with high uniformity could be achieved. In addition, the formation mechanism and vertical anti-correlation of QWRs are also discussed. (c) 2005 American Institute of Physics.
Resumo:
The propagation losses in single-line defect waveguides in a two-dimensional (2D) square-lattice photonic crystal (PC) consisted of infinite dielectric rods and a triangular-lattice photonic crystal slab with air holes are studied by finite-difference time-domain (FDTD) technique and a Pade approximation. The decaying constant beta of the fundamental guided mode is calculated from the mode frequency, the quality factor (Q-factor) and the group velocity v(g) as beta = omega/(2Qv(g)). In the 2D square-lattice photonic crystal waveguide (PCW), the decaying rate ranged from 10(3) to 10(-4) cm(-1) can be reliably obtained from 8 x 10(3)-item FDTD output with the FDTD computing time of 0.386 ps. And at most 1 ps is required for the mode with the Q-factor of 4 x 10(11) and the decaying rate of 10(-7) cm(-1). In the triangular-lattice photonic crystal slab, a 10(4)-item FDTD output is required to obtain a reliable spectrum with the Q-factor of 2.5 x 10(8) and the decaying rate of 0.05 cm(-1). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
GaN nanotip triangle pyramids were synthesized on 3C-SiC epilayer via an isoelectronic In-doping technique. The synthesis was carried out in a specially designed two-hot-boat chemical vapor deposition system. In (99.999%) and molten Ga (99.99%) with a mass ratio of about 1:4 were used as the source, and pieces of Si (111) wafer covered with 400-500 nm 3C-SiC epilayer were used as the substrates. The products were analyzed by x-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, Raman spectroscopy, and photoluminescence measurements. Our results show that the as-synthesized GaN pyramids are perfect single crystal with wurtzite structure, which may have potential applications in electronic/photonic devices.
Resumo:
A new type of photovoltaic system with higher generation power density has been studied in detail. The feature of the system is a V-shaped module (VSM) with two tilted monocrystalline solar cells. Compared to solar cells in a flat orientation, the VSM enhances external quantum efficiency and leads to an increase of 31% in power conversion efficiency. Due to the VSM technique, short-circuit current density was raised from 24.94 to 33.7mA/cm(2), but both fill factor and open-circuit voltage were approximately unchanged. For the VSM similar results (about 30% increase) were obtained for solar cells fabricated by using mono-crystal line silicon wafers with only conventional background impurities. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Polycrystalline nano-grain-boundary multi-doping ZnO-based nonlinear varistors with higher concentration additives have been fabricated by sol-gel and standard solid-state reaction method, of which the best sample has a very high threshold voltage of E-b = 3300 V/mm. The effect of sintering processes, sintering temperature and sintering time, and that of additive concentration of Bi2O3 on E-b of the samples are systematically investigated. The results show that the great merit of sol-gel method is its high threshold voltage obtained by a lower sintering temperature than the solid-state reaction method. The present work also shows that five phases including solid-state sintering, rich Bi liquid phase formation and ZnO as well as other additive dissolution, ZnO grain growth, the secondary phase sufficient formation and evolution have been experienced at different sintering temperatures. The hole type defect and nonhomogeneity of the microstructure will lead to the decrease of threshold voltage, i.e., the grain size and the homogeneity of the material will be important factors and directly affect the characteristic of the varistor. The sintering characteristic and the influence of Bi2O3 content on the threshold voltage are also discussed. (c) 2004 Elsevier B.V. All rights reserved.