812 resultados para Hippocampus (fish)
Resumo:
The fundamental features of growth may be universal, because growth trajectories of most animals are very similar, but a unified mechanistic theory of growth remains elusive. Still needed is a synthetic explanation for how and why growth rates vary as body size changes, both within individuals over their ontogeny and between populations and species over their evolution. Here we use Bertalanffy growth equations to characterize growth of ray-finned fishes in terms of two parameters, the growth rate coefficient, K, and final body mass, m∞. We derive two alternative empirically testable hypotheses and test them by analyzing data from FishBase. Across 576 species, which vary in size at maturity by almost nine orders of magnitude, K scaled as m_∞^(-0.23). This supports our first hypothesis that growth rate scales as m_∞^(-0.25) as predicted by metabolic scaling theory; it implies that species which grow to larger mature sizes grow faster as juveniles. Within fish species, however, K scaled as m_∞^(-0.35). This supports our second hypothesis which predicts that growth rate scales as m_∞^(-0.33) when all juveniles grow at the same rate. The unexpected disparity between across- and within-species scaling challenges existing theoretical interpretations. We suggest that the similar ontogenetic programs of closely related populations constrain growth to m_∞^(-0.33) scaling, but as species diverge over evolutionary time they evolve the near-optimal m_∞^(-0.25) scaling predicted by metabolic scaling theory. Our findings have important practical implications because fish supply essential protein in human diets, and sustainable yields from wild harvests and aquaculture depend on growth rates.
Resumo:
BACKGROUND: Carriers of the apolipoprotein E ɛ4 (APOE4) allele are lower responders to a docosahexaenoic acid (DHA) supplement than are noncarriers. This effect could be exacerbated in overweight individuals because DHA metabolism changes according to body mass index (BMI; in kg/m²). OBJECTIVES: We evaluated the plasma fatty acid (FA) response to a DHA-rich supplement in APOE4 carriers and noncarriers consuming a high-saturated fat diet (HSF diet) and, in addition, evaluated whether being overweight changed this response. DESIGN: This study was part of the SATgenɛ trial. Forty-one APOE4 carriers and 41 noncarriers were prospectively recruited and consumed an HSF diet for 8-wk followed by 8 wk of consumption of an HSF diet with the addition of DHA and eicosapentaenoic acid (EPA) (HSF + DHA diet; 3.45 g DHA/d and 0.5 g EPA/d). Fasting plasma samples were collected at the end of each intervention diet. Plasma total lipids (TLs) were separated into free FAs, neutral lipids (NLs), and phospholipids by using solid-phase extraction, and FA profiles in each lipid class were quantified by using gas chromatography. RESULTS: Because the plasma FA response to the HSF + DHA diet was correlated with BMI in APOE4 carriers but not in noncarriers, the following 2 groups were formed according to the BMI median: low BMI (<25.5) and high BMI (≥25.5). In response to the HSF + DHA diet, there were significant BMI × genotype interactions for changes in plasma concentrations of arachidonic acid and DHA in phospholipids and TLs and of EPA in NLs and TLs (P ≤ 0.05). APOE4 carriers were lower plasma responders to the DHA supplement than were noncarriers but only in the high-BMI group. CONCLUSIONS: Our findings indicate that apolipoprotein E genotype and BMI may be important variables that determine the plasma long-chain PUFA response to dietary fat manipulation. APOE4 carriers with BMI ≥25.5 may need higher intakes of DHA for cardiovascular or other health benefits than do noncarriers
Resumo:
Background: Although a large number of randomized controlled trials (RCTs) have examined the impact of the n-3 (ω-3) fatty acids EPA (20:5n-3) and DHA (22:6n-3) on blood pressure and vascular function, the majority have used doses of EPA+DHA of > 3 g per d,which are unlikely to be achieved by diet manipulation. Objective: The objective was to examine, using a retrospective analysis from a multi-center RCT, the impact of recommended, dietary achievable EPA+DHA intakes on systolic and diastolic blood pressure and microvascular function in UK adults. Design: Healthy men and women (n = 312) completed a double-blind, placebo-controlled RCT consuming control oil, or fish oil providing 0.7 g or 1.8 g EPA+DHA per d in random order each for 8 wk. Fasting blood pressure and microvascular function (using Laser Doppler Iontophoresis) were assessed and plasma collected for the quantification of markers of vascular function. Participants were retrospectively genotyped for the eNOS rs1799983 variant. Results: No impact of n-3 fatty acid treatment or any treatment * eNOS genotype interactions were evident in the group as a whole for any of the clinical or biochemical outcomes. Assessment of response according to hypertension status at baseline indicated a significant (P=0.046) fish oil-induced reduction (mean 5 mmHg) in systolic blood pressure specifically in those with isolated systolic hypertension (n=31). No dose response was observed. Conclusions: These findings indicate that, in those with isolated systolic hypertension, daily doses of EPA+DHA as low as 0.7 g bring about clinically meaningful blood pressure reductions which, at a population level, would be associated with lower cardiovascular disease risk. Confirmation of findings in an RCT where participants are prospectively recruited on the basis of blood pressure status is required to draw definite conclusions. The Journal of Nutrition NUTRITION/2015/220475 Version 4
Resumo:
This study investigated the presence of potentially human pathogenic strains of Vibrio spp., Aeromonas spp., Escherichia coli, Salmonella spp. and Staphylococcus aureus in fish commercialized in street markets of Sao Paulo city, Brazil. Twenty fish of different species were analyzed for foodborne pathogens using conventional methods. High levels of fecal contamination were detected in 25% of samples. S. aureus was isolated from 10% of samples. All were negative for Salmonella. Vibrio species, including Vibrio cholerae non-O1/non-O139, were observed in 85% of samples although Vibrio parahaemolyticus was not found in this study. Aeromonas spp., including A. hydrophila, was isolated from 50% of fish samples. The occurrence of these pathogens suggests that the fish commercialized in Sao Paulo may represent a health risk to the consumers.
Resumo:
The Tiete River and its tributary Pinheiros River receive a highly complex organic and inorganic pollutants load from sanitary sewage and industrial sources, as well as agricultural and agroindustrial activities. The aim of the present study was to evaluate the embryotoxic and teratogenic effects of sediments from selected locations in the Tiete River Basin by means of the sediment contact embryo toxicity assay with Danio rerio, in order to provide a comprehensive and realistic insight into the bioavailable hazard potential of these sediment samples. Lethal and sub-lethal effects were recorded, and high embryo toxicity could be found in the samples not only in the vicinity of the megacity Sao Paulo (Billings reservoir and Pinheiros River samples), but also downstream (in the reservoirs Barra Bonita, Promissao and Tres Irmaos). Results confirm that most toxicity is due to the discharges of the metropolitan area of Sao Paulo. However, they also indicate additional sources of pollutants along the river course, probably from industrial, agricultural and agroindustrial residues, which contribute to the degradation of each area. The sediment contact fish embryo test showed to be powerful tool to detect embryo toxicity in sediments, not only by being a sensitive method, but also for taking into account bioavailability. This test provides an ecological highly realistic and relevant exposure scenario, and should therefore be added in ecotoxicological sediment quality assessments. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Insulin is the hormone that plays an essential role in metabolism and mitosis of normal and tumor cells, exerting its pleiotropic effects through binding to specific membrane receptors and promoting the phosphorylation of tyrosine residues of the receptor itself and of other components of the signaling pathway. The aim of this study was to investigate the effects of insulin on melanogenesis and cell growth in three different cell lines: the goldfish GEM-81 erythrophoroma cells (undifferentiated and differentiated with 1.5% dimethylsulfoxide-DMSO), and the murine B16F10 and Cloudman S91 melanoma cells. Undifferentiated GEM-81 and B16F10 cells responded to insulin with a small increase of cell proliferation, whereas S91 cells responded with a decrease of growth. In the two mammalian cell lines, and in DMSO-differentiated GEM-81 cells, the hormone strongly inhibited melanogenesis, by decreasing tyrosinase activity. In undifferentiated GEM-81 cells, insulin had no effect on tyrosinase activity. An increase in the tyrosine phosphorylation status of pp 185 (insulin receptor substrate 1 and 2-IRS-1/2) phosphorylation degree was observed in S91 mouse melanoma and in differentiated GEM-81 erythrophoroma cells, suggesting that this specific protein was maintained during transformation process and participates in insulin signaling. Our results imply an ancient and diverse history of the insulin signaling system in vertebrate pigment cells. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
1. Prochilodus lineatus (Prochilodontidae, Characiformes) is a migratory species of great economic importance both in fisheries and aquaculture that is found throughout the Jacui, Paraiba do Sul, Parana, Paraguay and Uruguay river basins in South America. Earlier population studies of P. lineatus in the rio Grande basin (Parana basin) indicated the existence of a single population; however, the range of this species has been fragmented by the construction of several dams. Such dams modified the environmental conditions and could have constrained the reproductive migration of P. lineatus, possibly leading to changes in the population genetic structure. 2. In order to evaluate how genetic diversity is allocated in the rio Grande basin, 141 specimens of P. lineatus from eight collection sites were analysed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) with 15 restriction enzymes. 3. Forty-six haplotypes were detected, and 70% of them are restricted. The mean genetic variability indexes (h = 0.7721 and pi = 1.6%) were similar to those found in natural populations with a large effective size. Fst and Exact Test values indicated a lack of structuring among the samples, and the model of isolation by distance was tested and rejected. 4. The haplotype network indicated that this population of P. lineatus has been maintained as a single variable stock with some differences in the genetic composition (haplotypes) between samples. Indications of population expansion were detected, and this finding was supported by neutrality tests and mismatch distribution analyses. 5. The present study focused on regions between dams to serve as a parameter for further evaluations of genetic variability and the putative impact of dams and repopulation programmes in natural populations of P. lineatus. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Fluorescence in situ hybridization (FISH) using telomeric and ribosomal sequences was performed in four species of toad genus Chaunus: C. ictericus, C. jimi, C. rubescens and C. schneideri. Analyses based on conventional, C-banding and Ag-NOR staining were also carried out. The four species present a 2n = 22 karyotype, composed by metacentric and submetacentric chromosomes, which were indistinguishable either after conventional staining or banding techniques. Constitutive heterochromatin was predominantly located at pericentromeric regions, and telomeric sequences (TTAGGG)(n) were restricted to the end of all chromosomes. Silver staining revealed Ag-NORs located at the short arm of pair 7, and heteromorphism in size of NOR signals was also observed. By contrast, FISH with ribosomal probes clearly demonstrated absence of any heteromorphism in size of rDNA sequences, suggesting that the difference observed after Ag-staining should be attributed to differences in chromosomal condensation and/or gene activity rather than to the number of ribosomal cistrons.
Resumo:
Proline-specific dipeptidyl peptidases are emerging as a protease family with important roles in the regulation of signaling by peptide hormones related to energy balance. The treatment of neonatal rats with monosodium glutamate (MSG) is known to produce a selective damage on the arcuate nucleus with development of obesity. This study investigates the relationship among dipeptidyl peptidase IV (DPPIV) hydrolyzing activity, CD26 protein, fasting, and MSG model of obesity in 2 areas of the central nervous system. Dipeptidyl peptidase IV and CD26 were, respectively, evaluated by fluorometry, and enzyme-linked immunosorbent assay and reverse transcriptase polymerase chain reaction in soluble (SF) and membrane-bound (MF) fractions from the hypothalamus and hippocampus of MSG-treated and normal rats, submitted or not to food deprivation (FD). Dipeptidyl peptidase IV in both areas was distinguished kinetically as insensitive (DI) and sensitive (DS) to diprotin A. Compared with the controls, MSG and/or FD decreased the activity of DPPIV-DI in the SF and MF from the hypothalamus, as well as the activity of DPPIV-DS in the SF from the hypothalamus and in the MF from the hippocampus. Monosodium glutamate and/or FD increased the activity of DPPIV-DI in the MF from the hippocampus. The monoclonal protein expression of membrane CD26 by enzyme-linked immunosorbent assay decreased in the hypothalamus and increased in the hippocampus of MSG and/or FD relative to the controls. The existence of DPPIV-like activity with different sensitivities to diprotin A and the identity of insensitive with CD26 were demonstrated for the first time in the central nervous system. Data also demonstrated the involvement of DPPIV-DI/CD26 hydrolyzing activity in the energy balance probably through the regulation of neuropeptide Y and beta-endorphin levels in the hypothalamus and hippocampus. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to identify molecular pathways involved in audiogenic seizures in the epilepsy-prone Wistar Audiogenic Rat (WAR). For this, we used a suppression-subtractive hybridization (SSH) library from the hippocampus of WARs coupled to microarray comparative gene expression analysis, followed by Northern blot validation of individual genes. We discovered that the levels of the non-protein coding (npc) RNA BC1 were significantly reduced in the hippocampus of WARs submitted to repeated audiogenic seizures (audiogenic kindling) when compared to Wistar resistant rats and to both naive WARs and Wistars. By quantitative in situ hybridization, we verified lower levels of BC1 RNA in the GD-hilus and significant signal ratio reduction in the stratum radiatum and stratum pyramidale of hippocampal CA3 subfield of audiogenic kindled animals. Functional results recently obtained in a BC1-/- mouse model and our current data are supportive of a potential disruption in signaling pathways, upstream of BC1, associated with the seizure susceptibility of WARs. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Wistar Audiogenic Rat (WAR) is an epileptic-prone strain developed by genetic selection from a Wistar progenitor based on the pattern of behavioral response to sound stimulation. Chronic acoustic stimulation protocols of WARs (audiogenic kindling) generate limbic epileptogenesis, confirmed by ictal semiology, amygdale, and hippocampal EEG, accompanied by hippocampal and amygdala cell loss, as well as neurogenesis in the dentate gyrus (DG). In an effort to identify genes involved in molecular mechanisms underlying epileptic process, we used suppression-subtractive hybridization to construct normalized cDNA library enriched for transcripts expressed in the hippocampus of WARs. The most represented gene among the 133 clones sequenced was the ionotropic glutamate receptor subunit II (GluR2), a member of the a-amino-3-hydroxy-5-methyl-4-isoxazoleopropionic acid (AMPA) receptor. Although semiquantitative RT-PCR analysis shows that the hippocampal levels of the GluR2 subunits do not differ between naive WARs and their Wistar counterparts, we observed that the expression of the transcript encoding the splice-variant GluR2-flip is increased in the hippocampus of WARs submitted to both acute and kindled audiogenic seizures. Moreover, using in situ hybridization, we verified upregulation of GluR2-flip mainly in the CA1 region, among the hippocampal subfields of audiogenic kindled WARs. Our findings on differential upregulation of GluR2-flip isoform in the hippocampus of WARs displaying audiogenic seizures is original and agree with and extend previous immunohistochemical for GluR2 data obtained in the Chinese P77PMC audiogenic rat strain, reinforcing the association of limbic AMPA alterations with epileptic seizures. (C) 2009 Wiley-Liss, Inc.
Resumo:
We used c-Fos immunoreactivity to estimate neuronal activation in hypothalamic feeding-regulatory areas of 3-month-old rats fed control or oil-enriched diets (soy or fish) since weaning. While no diet effect was observed in c-Fos immunoreactivity of 24-h fasted animals, the acute response to refeeding was modified by both hyperlipidic diets but with different patterns. Upon refeeding, control-diet rats had significantly increased c-Fos immunoreactivity only in the paraventricular hypothalamic nucleus (PVH, 142%). In soy-diet rats, refeeding with the soy diet increased c-Fos immunoreactivity in dorsomedial hypothalamic nucleus (DMH, 271%) and lateral hypothalamic area (LH, 303%). Refeeding fish-diet rats with the fish diet increased c-Fos immunoreactivity in PVH (161%), DMH (177%), VMH (81%), and ARC (127%). Compared to the fish-diet, c-Fos immunoreactivity was increased in LH by the soy-diet while it was decreased in ventromedial hypothalamic nucleus (VMH) and arcuate hypothalamic nucleus (ARC). Based on the known roles of the activated nuclei, it is suggested that, unlike the fish-diet, the soy-diet induced a potentially obesogenic profile, with high LH and low VMH/PVH activation after refeeding.
Resumo:
A genomic region neighboring the alpha-synuclein gene, on rat chromosome 4, has been associated with anxiety- and alcohol-related behaviors in different rat strains. In this study, we have investigated potential molecular and physiological links between alpha-synuclein and the behavioral differences observed between Lewis (LEW) and Spontaneously Hypertensive (SHR) inbred rats, a genetic model of anxiety. As expected, LEW rats appeared more fearful than SHR rats in three anxiety models: open field, elevated plus maze and light/dark box. Moreover, LEW rats displayed a higher preference for alcohol and consumed higher quantities of alcohol than SHR rats. alpha-Synuclein mRNA and protein concentrations were higher in the hippocampus, but not the hypothalamus of LEW rats. This result inversely correlated with differences in dopamine turnover in the hippocampus of LEW and SHR rats, supporting the hypothesis that alpha-synuclein is important in the downregulation of dopamine neurotransmission. A novel single nucleotide polymorphism was identified in the 30-untranslated region (3`-UTR) of the alpha-synuclein cDNA between these two rat strains. Plasmid constructs based on the LEW 3`-UTR sequence displayed increased expression of a reporter gene in transiently transfected PC12 cells, in accordance with in-vivo findings, suggesting that this nucleotide exchange might participate in the differential expression of alpha-synuclein between LEW and SHR rats. These results are consistent with a novel role for alpha-synuclein in modulating rat anxiety- like behaviors, possibly through dopaminergic mechanisms. Since the behavioral and genetic differences between these two strains are the product of independent evolutionary histories, the possibility that polymorphisms in the alpha-synuclein gene may be associated with vulnerability to anxiety- related disorders in humans requires further investigation. Molecular Psychiatry (2009) 14, 894-905; doi: 10.1038/mp.2008.43; published online 22 April 2008
Resumo:
Fish oil supplementation has been shown to improve the cachectic state of tumor-bearing animals and humans. Our previous study showed that fish oil supplementation (1 g per kg body weight per day) for 2 generations had anticancer and anticachetic effects in Walker 256 tumor-bearing rats as demonstrated by reduced tumor growth and body weight loss and increased food intake and survival. In this study, the effect of fish oil supplementation for 2 generations on membrane integrity, proliferation capacity, and CD4/CD8 ratio of lymphocytes isolated from mesenteric lymph nodes, spleen, and thymus of Walker 256 tumor-bearing animals was investigated. We also determined fish oil effect on plasma concentration and ex vivo production of cytokines [tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), interleukin-4 (IL-4), IL-6, and IL-10]. Lymphocytes from thymus of tumor-bearing rats presented lower viability, but this change was abolished by fish oil supplementation. Tumor growth increased proliferation of lymphocytes from all lymphoid organs, and fish oil supplementation abolished this effect. Ex vivo production of TNF-alpha and IL-6 was reduced in supplemented animals, but IL-4 and IL-10 secretion was stimulated in both nontumor and tumor-bearing rats. IL-10 and IFN-gamma plasma levels was also decreased in supplemented animals. These results suggest that the anticachetic effects of fish oil supplementation for a long period of time (2 generations) in Walker 256 tumor-bearing rats may be associated to a decrease in lymphocyte function as demonstrated by reduced viability, proliferation capacity, and cytokine production.
Resumo:
Here we investigated the effect of lifelong supplementation of the diet with coconut fat (CO, rich in saturated fatty acids) or fish oil (170, rich in n-3 polyunsaturated fatty acids) on tumor growth and lactate production from glucose in Walker 256 tumor cells, peritoneal macrophages, spleen, and gut-associated lymphocytes. Female Wistar rats were supplemented with CO or FO prior to mating and then throughout pregnancy and gestation and then the male offspring were supplemented from weaning until 90 days of age. Then they were inoculated subcutaneously with Walker 256 tumor cells. Tumor weight at 14 days in control rats (those fed standard chow) and CO supplemented was approximately 30 g. Supplementation of the diet with FO significantly reduced tumor growth by 76%. Lactate production (nmol h(-1) mg(-1) protein) from glucose by Walker 256 cells in the group fed regular chow (W) was 381.8 +/- 14.9. Supplementation with coconut fat (WCO) caused a significant reduction in lactate production by 1.6-fold and with fish oil (WFO) by 3.8-fold. Spleen lymphocytes obtained from W and WCO groups had markedly increased lactate production (553 +/- 70 and 635 +/- 150) when compared to non-tumor-bearing rats (similar to 260 +/- 30). FO supplementation reduced significantly the lactate production (297 +/- 50). Gut-associated lymphocytes obtained from W and WCO groups increased lactate production markedly (280 +/- 31 and 276 +/- 25) when compared to non-tumor-bearing rats (similar to 90 +/- 18). FO supplementation reduced significantly the lactate production (168 +/- 14). Lactate production by peritoneal macrophages was increased by tumor burden but there was no difference between the groups fed the various diets. Lifelong consumption of FO protects against tumor growth and modifies glucose metabolism in Walker tumor cells and lymphocytes but not in macrophages. Copyright (C) 2008 John Wiley & Sons, Ltd.