1000 resultados para Geradores de números aleatórios
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação de Mestrado em Gerontologia Social
Resumo:
Um dos fenómenos mais curiosos do ano de 2005, que não deve ter passado despercebido ao leitor, foi o aparecimento do Sudoku. Os jornais começaram a incluir este quebra-cabeças ao lado dos horóscopos e das habituais palavras cruzadas. (...) Mas terá o Sudoku alguma Matemática? À primeira vista, o leitor pode pensar que a resposta é afirmativa, tendo em conta que, num desafio de Sudoku, utilizam-se os primeiros nove números naturais, do 1 ao 9. E se tem números é porque tem Matemática! A verdade é que nem tudo o que tem números é Matemática. Além disso, a dinâmica e interesse do Sudoku não está propriamente na utilização de números. Os números estão no Sudoku apenas porque são 9 símbolos que estamos muito habituados a reconhecer e a distinguir e não porque cumprem qualquer função matemática na resolução deste quebra-cabeças. As estratégias utilizadas na resolução de um problema de Sudoku assentam essencialmente na lógica e na eliminação de possibilidades. Podemos mesmo substituir cada um dos números, do 1 ao 9, por quaisquer outros símbolos, por exemplo por nove letras do alfabeto, obtendo exatamente o mesmo tipo de problema na sua essência. (...) A estrutura deste quebra-cabeças baseia-se num quadrado, com n linhas e n colunas, que deve ser preenchido com n símbolos diferentes em que cada símbolo aparece uma e uma só vez em cada linha e cada coluna. Este tipo de estrutura tem um nome em Matemática. Chama-se quadrado latino e é estudo em diversas áreas da Matemática, como na Álgebra. (...)
Resumo:
No presente editorial, a autora faz o enquadramento da Conferência Internacional Metropolis, que decorreu nos Açores, enaltecendo o facto de este evento ter decorrido, pela primeira vez, nas ilhas atlânticas.
Resumo:
Este artigo apresenta e discute alguns aspetos sobre a aprendizagem da divisão com números naturais, focando-se nos procedimentos usados por alunos de uma turma do 3.º ano na resolução de tarefas de divisão. Os resultados apresentados fazem parte de uma investigação mais abrangente que teve como finalidade a compreensão do modo como os alunos aprofundam a aprendizagem da multiplicação numa perspetiva de desenvolvimento do sentido do número. A investigação realizada seguiu uma metodologia de design research, na modalidade de experiência de ensino. A análise das produções escritas dos alunos e de episódios de sala de aula relativos às discussões coletivas sobre as resoluções das tarefas propostas mostra que os alunos usam uma diversidade de procedimentos e que estes evoluem significativamente ao longo da experiência de ensino. Esta evolução parece ser suportada pelas características das tarefas, os seus contextos e números, assim como pela articulação, desde logo estabelecida, entre a divisão e a multiplicação. Além disso, o recurso ao modelo retangular parece, também, ter contribuído para a progressão para procedimentos multiplicativos, baseados na decomposição de um dos fatores. Os resultados do estudo permitem ainda perceber que a evolução dos procedimentos usados pelos alunos e a sua diversidade não são alheias ao ambiente de sala de aula construído.
Resumo:
Este trabalho constitui um resumo documentado de algumas ideias-chave sobre os números, normalmente tratadas no pré-escolar. O texto, além de poder ser lido por investigadores ligados a esta área, foi escrito de forma a constituir um documento de apoio com interesse para os profissionais que estão "no terreno" (educadores, auxiliares, entre outros) e uma fonte de consulta para pais, encarregados de educação e todos aqueles que se interessam por crianças (no fundo, quase todos nós). Os assuntos tratados, basicamente relativos à primeira dezena e subdivididos nas temáticas "Cardinalidade", "Numerais" e "Ordinalidade", são fundamentados com estudos e opiniões de matemáticos, psicólogos e neurocientistas. Além disso, teve-se em conta o contributo, igualmente importante, de inúmeros educadores que partilharam o seu olhar e a sua experiência. Sendo assim, além da abordagem teórica, são apresentados bastantes exemplos práticos e alguma multimédia.
Resumo:
Nos últimos anos o conhecimento do professor tem vindo a ser reconhecido como um dos aspetos nucleares no, e para o, desenvolvimento do conhecimento matemático dos alunos. Atendendo a essa centralidade, a formação deverá focar-se onde é, efetivamente, necessária, de modo a potenciar um incremento do conhecimento dos alunos, pelo conhecimento (e práticas) dos professores. Sendo os números racionais um dos tópicos problemáticos para os alunos, é fundamental identificar quais as situações matematicamente (mais) críticas para os professores de modo que, pela formação facultada, possam deixar de o ser. Neste artigo, tendo por foco o conhecimento matemático do professor e as suas especificidades, discutimos alguns aspetos desse conhecimento de futuros professores sobre números racionais, em concreto o sentido de número racional, identificando as suas componentes mais problemáticas e equacionando alguns dos porquês em que se sustentam. Terminamos com algumas considerações sobre implicações para a formação de professores e responsabilidade dos seus formadores.
Resumo:
XI Colóquio sobre Questões Curriculares / VII Colóquio Luso-Brasileiro & I Colóquio Luso-Afro-Brasileiro sobre Questões Curriculares. Complexo pedagógico I, Campus de Gualtar - Universidade do Minho, Braga - Portugal, entre quinta-feira, 18-09-2014 e sábado, 20-09-2014.
Resumo:
Voltamos ao tema dos quadrados mágicos. (...) Vejamos alguns exemplos curiosos. Começamos pelo Quadrado Mágico do Aniversariante (figura A). Se o leitor fizer as contas, verificará que a soma dos números de cada linha, de cada coluna e de cada uma das duas diagonais do quadrado é sempre 22 (figura B). Este é, portanto, um quadrado mágico ideal para quem tem 22 anos. Contudo, a sua utilização é muito mais flexível do que à primeira vista se possa pensar. Isto porque também é possível utilizar este quadrado mágico para felicitar qualquer amigo com mais de 22 anos. Se quisermos que o quadrado da figura A tenha constante mágica igual a x, com x>22, basta adicionar a cada um dos números das quatro casas brancas o valor x-22. (...) Na figura D, apresenta-se um Quadrado Mágico Reversível. Este quadrado aparece no livro "Self-working Number Magic", de Karl Fulves, publicado em 1983. Para começar, uma observação atenta a cada linha, coluna ou diagonal do quadrado permite concluir que, em cada uma dessas filas, são utilizados os mesmos algarismos: 1, 6, 8 e 9. Um olhar ainda mais atento permite detetar duas ocorrências de cada um desses algarismos por fila. (...)
Resumo:
(...) Explora-se neste artigo um exemplo deste tipo de números de identificação com algarismo de controlo: o número de série das notas de Euro. (...) Destacam-se várias novidades nas novas notas de 5 e 10 Euros: a marca de água e a banda holográfica passam a incluir um retrato de Europa, a figura da mitologia grega que dá nome a esta segunda série de notas de Euro; (...) O número de série, que nas notas da primeira série aparecia duas vezes no verso da nota, passa a constar nas novas notas uma só vez (no canto superior direito). Os seus 6 últimos algarismos aparecem também na vertical, sensivelmente a meio das novas notas. Ao todo, o número de série é composto por 12 caracteres: 1 letra e 11 algarismos nas notas antigas e 2 letras e 10 algarismos nas notas novas. (...) A título de exemplo, verifiquemos se é válido o número de série: PA0626068043. Substituindo P por 8 e A por 2, obtemos o número 820626068043. Se adicionarmos todos os seus algarismos, temos s=45, que é um múltiplo de 9. Um método alternativo consiste em adicionar sucessivamente os algarismos, retirando “noves” sempre que possível. No final deve obter-se 0 (significa que o número de série é um múltiplo de 9, ou seja, que o resto da sua divisão por 9 é zero). (...) O leitor pode mesmo tirar proveito desta informação para ganhar algumas notas de Euro. Basta fazer uma aposta com o dono de uma nota, desafiando-o a tapar o último algarismo do número de série. Se conseguir “adivinhar” qual é esse algarismo, a nota será sua! Só tem que recordar os valores que são atribuídos às letras e aplicar um dos dois métodos indicados. (...)
Resumo:
Existem muitos exemplos interessantes de quadrados mágicos com histórias curiosas. Desde logo, se recuarmos no tempo e viajarmos até à antiga China. Segundo reza a lenda, por volta de 2200 a.C., o imperador Yu terá avistado uma tartaruga a sair do Rio Amarelo. Essa tartaruga apresentava um intrigante padrão formado por pontos pretos e brancos, que se assemelhava a uma grelha 3x3, preenchida com os primeiros 9 números naturais (1-9), dispostos de uma forma curiosa. (...) Outro aspeto curioso prende-se com o facto de os astrólogos da Renascença usarem quadrados mágicos associados aos diferentes planetas do Sistema Solar. (...) Outro aspeto que pode ser considerado nestes quadrados mágicos planetários é a soma de todos os números que compõem o quadrado, que se designa por soma mística (esta soma obtém-se multiplicando a constante mágica pelo número total de linhas do quadrado, isto porque ao adicionar os números de qualquer linha, obtém-se sempre a constante mágica). Por exemplo, o quadrado de Saturno tem soma mística igual a 15x3=45; o de Júpiter, 34x4=136; o de Marte, 65x5=325; e o do Sol, 111x6=666. Num quadrado planetário de ordem N, utilizam-se todos os números naturais, do 1 ao NxN, uma e uma só vez. Por este motivo, e tendo em conta as propriedades das progressões aritméticas, a soma mística de um quadrado planetário de ordem N pode ser obtida da fórmula NxN(NxN+1)/2, sendo a constante mágica igual a N(NxN+1)/2. (...)
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em hidráulica
Resumo:
Os códigos de barras são exemplos de sistemas de identificação com algarismo de controlo, que tem como objetivo verificar se foi cometido pelo menos um erro de escrita, leitura ou transmissão da informação. Nos códigos de barras, o algarismo de controlo é o algarismo das unidades (primeiro algarismo da direita). Os restantes algarismos de um código de barras contêm informação específica. Por exemplo, os três primeiros algarismos da esquerda identificam sempre o país de origem (com a exceção dos códigos de barras dos livros, que apresentam o prefixo 978 ou 979, e dos códigos de uso interno das superfícies comerciais como, por exemplo, para os artigos embalados na padaria ou na peixaria de um supermercado, que começam por 2). Seguem-se alguns exemplos: 300-379 (França e Mónaco); 400-440 (Alemanha); 500-509 (Reino Unido); 520 (Grécia); 539 (Irlanda); 540-549 (Bélgica e Luxemburgo); 560 (Portugal); 690-695 (China); 760-769 (Suíça); 789-790 (Brasil); 840-849 (Espanha e Andorra); 888 (Singapura); 958 (Macau). Observe-se que os países com uma maior produção têm à sua disposição mais de um prefixo de três algarismos. (...) Para se verificar se o número do código de barras está correto, procede-se da seguinte forma (...) obtêm-se, respetivamente, as somas I e P; por fim, calcula-se o valor de S=I+3xP que deverá ser um múltiplo de 10 (ou seja, o seu algarismo das unidades deverá ser 0). (...) E que relação existe entre as barras e os algarismos? Ao olhar com atenção para um código de barras EAN-13, reparamos que os 13 algarismos são distribuídos da seguinte forma: o primeiro algarismo surge isolado à esquerda das barras, enquanto que os restantes surgem por baixo destas, divididos em dois grupos de seis algarismos separados por barras geralmente mais compridas do que as restantes: três barras nas laterais (preto-branco-preto) e cinco barras ao centro (branco-preto-branco-preto-branco). As restantes barras são mais curtas e codificam os 12 algarismos (indiretamente, também codificam o algarismo da esquerda). (...) A representação dos algarismos por barras brancas e pretas respeita alguns princípios como os de paridade e simetria, pelo que um algarismo não é sempre representado da mesma forma. Este aspeto permite que um código de barras possa ser lido por um leitor ótico sem qualquer ambiguidade, quer esteja na posição normal ou "de pernas para o ar". (...) Recentemente surgiu uma nova geração de códigos de barras designados por códigos de resposta rápida ou códigos QR (do inglês Quick Response). Certamente o leitor já os viu em cartazes publicitários ou em revistas. (...)
Resumo:
Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Jornalismo.
Resumo:
Dissertação de Mestrado em Ambiente, Saúde e Segurança.