937 resultados para FLOW-INJECTION DETERMINATION
Resumo:
We review recent developments in manifold components and the introduction of light-emitting-diode technology in spectroscopic detection in order to evaluate the tremendous possibilities offered by multi-commutation for infield and in-situ measurements, based on the use of multi-pumping and low-voltage, portable batteries, which make possible a dramatic reduction in size, weight and power requirements of spectrometric devices. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A fully automated multipumping flow system (MPFS) using water-soluble CdTe quantum dots (QD) as sensitizers is proposed for the chemiluminometric determination of the anti-diabetic drugs gliclazide and glipizide in pharmaceutical formulations. The nanocrystals acted as enhancers of the weak CL emission produced upon oxidation of sulphite by Ce(IV) in acidic medium, thus improving sensitivity and expanding the dynamical analytical concentration range. By interacting with the QD, the two analytes prevented their sensitizing effect yielding a chemiluminescence quenching of the Ce(IV)-SO(3)(2-)CdTe QD system. The pulsed flow inherent to MPFS assured a fast and efficient mixing of all solutions inside the flow cell, circumventing the need for a reaction coil and facilitating the monitoring of the short-lived generated chemiluminescent species. QD crystal size, concentration and spectral region for measurement were investigated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A single reaction interface flow analysis (SIFA) system for the monitoring of mannitol in pharmaceutical formulations and human urine is presented. The developed approach takes advantage of the mannitol scavenger aptitude to inhibit the chemiluminescent reaction between luminol and myoglobin in the absence of H(2)O(2). The SIFA system facilitated the fully automation of the developed methodology, allowing the in-line reproducible handling of chemical species with a very short lifetime as is the case of the hydroxyl radical generated in the abovementioned luminol/myoglobin reaction. The proposed methodology allowed the determination of mannitol concentrations between 25 mmol L(-1) and 1 mol L(-1), with good precision (R.S.D. < 4.7%, n = 3) and a sampling frequency of about 60 h(-1). The procedure was applied to the determination of mannitol in pharmaceuticals and in human urine samples Without any pretreatment process. The results obtained for pharmaceutical formulations were statistically comparable to those provided by the reference method (R.D. < 4.6%); recoveries values obtained in the analysis of spiked urine samples (between 94.9 and 105.3% of the added amount) were also satisfactory. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Liquid-core waveguides (LCWs), devices that constrain the emitted radiation minimizing losses during the transport, are an alternative to maximize the amount of detected radiation in luminescence. In this work, the performance of a LCW flow-cell was critically evaluated for chemiluminescence measurements, by using as model the oxidation of luminol by hydrogen peroxide or hypochlorite. An analytical procedure for hypochlorite determination was also developed, with linear response in the range 0.2-3.8 mg/L (2.7-51 mu mol/L), a detection limit estimated as 8 mu g/L (0.64 mu mol/L) at the 99.7% confidence level and luminol consumption of 50 mu g/determination. The coefficients of variation were 3.3% and 1.6% for 0.4 and 1.9 mg/L CIO(-), respectively, with a sampling rate of 164 determinations/h. The procedure was applied to the analysis of Dakin`s solution samples, yielding results in agreement with those obtained by iodometric titration at the 95% confidence level. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
Coupling of a flow cell based on a liquid core waveguide (LCW) to flow systems for spectro photometric measurements was critically evaluated. Flow-based systems with and without chemical reactions were exploited to estimate the increase in analytical signal in comparison to those obtained with a conventional I cm cell under different experimental conditions. The Schlieren effect associated to intense concentration gradients in the sample zone was investigated with model solutions that do not absorb visible electromagnetic radiation. The effect of radiation scattering was lower than the expected by considering the increase in the optical path, being the magnitude of the perturbation up to 40% higher for the 100-cm LCW cell. Several alternatives for compensation of the Schlieren effect were experimentally investigated. The potentiality of the LCW for turbidimetric measurements and coupling to monosegmented flow analysis was also evaluated. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Sequential injection analysis (SIA) is proposed for managing microvolumes of sample and arsenic species solutions for speciation analysis by capillary electrophoresis focusing on the reduction of hazardous waste residues. An electronically controlled hydrodynamic injector was projected to introduce microvolumes of solutions prepared by SIA into the CE capillary with precision better than 2%. The determination of arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, and arsenobetaine was performed from 50 mu L volumes of lyophilized urine and extract of shrimp with the system hyphenated to inductively coupled plasma mass spectrometry (CE-ICP-SFMS).
Resumo:
This paper describes the manufacture of tubular ceramic membranes and the study of their performance in the demulsification of soybean oil/water emulsions. The membranes were made by iso-static pressing method and micro and macro structurally characterized by SEM, porosimetry by mercury intrusion and determination of apparent density and porosity. The microfiltration tests were realized on an experimental workbench, and fluid dynamic parameters, such as transmembrane flux and pressure were used to evaluate the process relative to the oil phase concentration (analysed by TOC measurements) in the permeate. The results showed that the membrane with pores` average diameter of 1.36 mu m achieved higher transmembrane flux than the membrane with pores` average diameter of 0.8 mu m. The volume of open pores (responsible for the permeation) was predominant in the total porosity, which was higher than 50% for all tested membranes. Concerning demulsification, the monolayer membranes were efficacious, as the rejection coefficient was higher than 99%.
Resumo:
Many factors affect the airflow patterns, thermal comfort, contaminant removal efficiency and indoor air quality at individual workstations in office buildings. In this study, four ventilation systems were used in a test chamber designed to represent an area of a typical office building floor and reproduce the real characteristics of a modern office space. Measurements of particle concentration and thermal parameters (temperature and velocity) were carried out for each of the following types of ventilation systems: (a) conventional air distribution system with ceiling supply and return; (b) conventional air distribution system with ceiling supply and return near the floor; (c) underfloor air distribution system; and (d) split system. The measurements aimed to analyse the particle removal efficiency in the breathing zone and the impact of particle concentration on an individual at the workstation. The efficiency of the ventilation system was analysed by measuring particle size and concentration, ventilation effectiveness and the indoor/outdoor ratio. Each ventilation system showed different airflow patterns and the efficiency of each ventilation system in the removal of the particles in the breathing zone showed no correlation with particle size and the various methods of analyses used. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Demands for optimal boiler performance and increased concerns in lowering emission have always been the driving force in the reevaluation and evolution of the Kraft boiler: specifically the air distribution strategies that are directly related to achieving increased residence time of flue gas combustion inside the furnace which in turn lowers atmosphere emission levels and enhances boiler operation. This paper presents the results of a study that analyzes the interaction of the different multilevel air injections have on flue gas flow patterns including various quaternary air supply arrangements. Additionally, this study assesses the performance of the CFD (Computational Fluid Dynamics) model against data available in literature. Simulations were performed considering isothermal and incompressible flows, and did not take into account thermal phenomena or chemical reactions. The numerical solutions generated proved to be coherently related to the data available in literature, and provided proof of the efficiency of tertiary level air injection, as well as revealed that quaternary air injection ports arranged in a symmetrical configuration is most suitable for optimal equipment operation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
For the optimal design of plate heat exchangers (PHEs), an accurate thermal-hydraulic model that takes into account the effect of the flow arrangement on the heat load and pressure drop is necessary. In the present study, the effect of the flow arrangement on the pressure drop of a PHE is investigated. Thirty two different arrangements were experimentally tested using a laboratory scale PHE with flat plates. The experimental data was used for (a) determination of an empirical correlation for the effect of the number of passes and number of flow channels per pass on the pressure drop; (b) validation of a friction factor model through parameter estimation; and (c) comparison with the simulation results obtained with a CFD (computational fluid dynamics) model of the PHE. All three approaches resulted in a good agreement between experimental and predicted values of pressure drop. Moreover, the CFD model is used for evaluating the flow maldistribution in a PHE with two channels Per Pass. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The present investigation is the first part of an initiative to prepare a regional map of the natural abundance of selenium in various areas of Brazil, based on the analysis of bean and soil samples. Continuous-flow hydride generation electrothermal atomic absorption spectrometry (HG-ET AAS) with in situ trapping on an iridium-coated graphite tube has been chosen because of the high sensitivity and relative simplicity. The microwave-assisted acid digestion for bean and soil samples was tested for complete recovery of inorganic and organic selenium compounds (selenomethionine). The reduction of Se(VI) to Se(IV) was optimized in order to guarantee that there is no back-oxidation, which is of importance when digested samples are not analyzed immediately after the reduction step. The limits of detection and quantification of the method were 30 ng L(-1) Se and 101 ng L(-1) Se, respectively, corresponding to about 3 ng g(-1) and 10 ng g(-1), respectively, in the solid samples, considering a typical dilution factor of 100 for the digestion process. The results obtained for two certified food reference materials (CRM), soybean and rice, and for a soil and sediment CRM confirmed the validity of the investigated method. The selenium content found in a number of selected bean samples varied between 5.5 +/- 0.4 ng g(-1) and 1726 +/- 55 ng g(-1), and that in soil samples varied between 113 +/- 6.5 ng g(-1) and 1692 +/- 21 ng g(-1). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Microemulsion electrokinetic capillary chromatography has been successfully applied to the separation and determination of water-soluble vitamins (thiamine hydrochloride, riboflavin, niacin, pyridoxine hydrochloride, folic acid, cobalamin, ascorbic acid) and a fat-soluble vitamin (alpha-tocopherol acetate). The optimal microemulsion buffer contained sodium dodecylsulfate (SDS) as surfactant, butan-1-ol as the co-surfactant, ethyl acetate as the oil and pH 9.2 tetraborate buffer, modified with 15% (v/v) 2-propanol. UV detection at 214 nm gave adequate sensitivity without interference from sample excipients. Under the optimized conditions, the vitamins were baseline separated in less than 7 min. Analytical curves of peak area versus concentration presented coefficients of determination (R (2) ) > 0.99, acceptable limits of quantification between 8.40 and 16.23 mu g mL(-1) were obtained. Vitamin levels in liquid formulation were quantified with intra-day precision better than 0.99% RSD for migration time and 1.19% RSD for peak area ratio. Recoveries ranged between 98.7 and 101.7%. The method was considered appropriate for rapid and routine analysis.
Resumo:
Many therapeutic agents are commercialized under their racemic form. The enantiomers can show differences in the pharmacokinetic and pharmacodynamic profile. The use of a pure enantiomer in pharmaceutical formulations may result in a better therapeutic index and fewer adverse effects. Atropine, an alkaloid of Atropa belladonna, is a racemic mixture of l-hyoscyamine and d-hyoscyamine. It is widely used to dilate the pupil. To quantify these enantiomers in ophthalmic solutions, an HPLC method was developed and validated using a Chiral AGP (R) column at 20 degrees C. The mobile phase consisted of a buffered phosphate solution (containing 10 mM 1-octanesulfonic acid sodium salt and 7.5 mM triethylamine, adjusted to pH 7.0 with orthophosphoric acid) and acetonitrile (99 + 1, v/v). The flow rate was 0.6 mL/min, with UV detection at 205 nm. In the concentration range of 14.0-26.0 mu g/mL, the method was found to be linear (r > 0.9999), accurate (with recovery of 100.1-100.5%), and precise (RSD system: <= 0.6%; RSD intraday: <= 1.1%; RSD interday: <= 0.9%). The method was specific, and the standard and sample solutions were stable for up to 72 h. The factorial design assures robustness with a variation of +/-10% in the mobile phase components and 2 degrees C of column temperature. The complete validation, including stress testing and factorial design, was studied and is presented in this research.
Resumo:
Choline citrate (CC) and acetylmethionine (AM) are lipotropic drugs used in several pharmaceutical formulations. The objective of this research was to develop and validate a high performance liquid chromatographic (HPLC) method for simultaneous determination of CC and AM in injectable solutions, aiming its application in routine analysis for quality control of these pharmaceutical formulations. The method was validated using a Shim-Pack (R) C18 (250 x 4.6 mm, 5 mu m) column. The mobile phase was constituted of 25 mM potassium phosphate buffer solution, pH 5.7, adjusted with 10 % orthophosphoric acid, acetonitrile and methanol (88:10:2, v/v/v). The flow rate was 1.1 mL.min(-1) and the UV detection was made at 210 nm. The analyses were made at room temperature (25 +/- 1 degrees C). The method is precise, selective, accurate and robust, and was successfully applied for simultaneous quantitative determination of CC and AM in injectables.
Resumo:
A reversed-phase high performance liquid chromatographic (RP-HPLC) method for determination of econazole nitrate, preservatives (methylparaben and propylparaben) and its main impurities (4-chlorobenzl alcohol and alpha-(2,4-dicholorophenyl)-1H-imidazole-1-ethanol) in cream formulations, has been developed and validated. Separation was achieved on a column Bondclone (R) C18 (300 mm x 3.9 mm i.d., 10 mu m) using a gradient method with mobile phase composed of methanol and water. The flow rate was 1.4 mL min(-1), temperature of the column was 25 C and the detection was made at 220 nm. Miconazole nitrate was used as an internal standard. The total run time was less than 15 min, The analytical curves presented coefficient of correlation upper to 0.99 and detection and quantitation limits were calculated for all molecules. Excellent accuracy and precision were obtained for econazole nitrate. Recoveries varied from 97.9 to 102.3% and intra- and inter-day precisions, calculated as relative standard deviation (R.S.D), were lower than 2.2%. Specificity, robustness and assay for econazole nitrate were also determined. The method allowed the quantitative determination of econazole nitrate, its impurities and preservatives and could be applied as a stability-indicating method for econazole nitrate in cream formulations. (C) 2008 Elsevier B.V. All rights reserved.