947 resultados para Canopy gaps
Resumo:
Aim Explore practice nurses' (PNs) role in child health and development, and advising parents about child health issues. Background Introduction of the four-year-old child health check into general practice in 2008 placed additional responsibilities on PNs in child health and wellness. This study explores their readiness to expand their practice into this area. Design Integrated mixed method design, self-report survey. Method A purpose-developed questionnaire explored demographics, child health roles and responsibilities, difficulties encountered, professional development needs, barriers and facilitators, and professional development activities undertaken in the past year. Surveys were posted to 218 PNs in one rural Division of General Practice (DGP) in Queensland, Australia; 29 responded. Results PNs reported a significant role in well and sick child care (93.1%) though few had a paediatric/child health background (14.3%). Roles included immunisations (92.3%), child health checks (65.4%), general child health and development (26.9%), asthma (23.1%), feeding (15.4%), fever (11.5%), settling/sleeping (11.5%). PNs were interested in learning more about (81.5%) and incorporating more child health into their practice (81.5%). Professional development in childhood growth and development (80.0%), health and illness (60.0%) and advising new mothers (20.0%) was needed. Conclusions PNs play a substantial role in child health, are unprepared for the complexities of this role and have preferred methods for undertaking professional development to address knowledge deficits. Implications for practice PNs are unprepared for an advanced role in child health and wellness. Significant gaps in their knowledge to support this role were identified. This ever-expanding role requires close monitoring to ensure knowledge precedes expectations to practice.
Resumo:
Due to knowledge gaps in relation to urban stormwater quality processes, an in-depth understanding of model uncertainty can enhance decision making. Uncertainty in stormwater quality models can originate from a range of sources such as the complexity of urban rainfall-runoff-stormwater pollutant processes and the paucity of observed data. Unfortunately, studies relating to epistemic uncertainty, which arises from the simplification of reality are limited and often deemed mostly unquantifiable. This paper presents a statistical modelling framework for ascertaining epistemic uncertainty associated with pollutant wash-off under a regression modelling paradigm using Ordinary Least Squares Regression (OLSR) and Weighted Least Squares Regression (WLSR) methods with a Bayesian/Gibbs sampling statistical approach. The study results confirmed that WLSR assuming probability distributed data provides more realistic uncertainty estimates of the observed and predicted wash-off values compared to OLSR modelling. It was also noted that the Bayesian/Gibbs sampling approach is superior compared to the most commonly adopted classical statistical and deterministic approaches commonly used in water quality modelling. The study outcomes confirmed that the predication error associated with wash-off replication is relatively higher due to limited data availability. The uncertainty analysis also highlighted the variability of the wash-off modelling coefficient k as a function of complex physical processes, which is primarily influenced by surface characteristics and rainfall intensity.
Resumo:
There has been an intense debate about climatic impacts on the transmission of malaria. It is vitally important to accurately project future impacts of climate change on malaria to support effective policy–making and intervention activity concerning malaria control and prevention. This paper critically reviewed the published literature and examined both key findings and methodological issues in projecting future impacts of climate change on malaria transmission. A literature search was conducted using the electronic databases MEDLINE, Web of Science and PubMed. The projected impacts of climate change on malaria transmission were spatially heterogeneous and somewhat inconsistent. The variation in results may be explained by the interaction of climatic factors and malaria transmission cycles, variations in projection frameworks and uncertainties of future socioecological (including climate) changes. Current knowledge gaps are identified, future research directions are proposed and public health implications are assessed. Improving the understanding of the dynamic effects of climate on malaria transmission cycles, the advancement of modelling techniques and the incorporation of uncertainties in future socioecological changes are critical factors for projecting the impact of climate change on malaria transmission.
Resumo:
Executive Summary Emergency Departments (EDs) locally, nationally and internationally are becoming increasingly busy. Within this context, it can be challenging to deliver a health service that is safe, of high quality and cost-effective. Whilst various models are described within the literature that aim to measure ED ‘work’ or ‘activity’, they are often not linked to a measure of costs to provide such activity. It is important for hospital and ED managers to understand and apply this link so that optimal staffing and financial resourcing can be justifiably sought. This research is timely given that Australia has moved towards a national Activity Based Funding (ABF) model for ED activity. ABF is believed to increase transparency of care and fairness (i.e. equal work receives equal pay). ABF involves a person-, performance- or activity-based payment system, and thus a move away from historical “block payment” models that do not incentivise efficiency and quality. The aim of the Statewide Workforce and Activity-Based Funding Modelling Project in Queensland Emergency Departments (SWAMPED) is to identify and describe best practice Emergency Department (ED) workforce models within the current context of ED funding that operates under an ABF model. The study is comprised of five distinct phases. This monograph (Phase 1) comprises a systematic review of the literature that was completed in June 2013. The remaining phases include a detailed survey of Queensland hospital EDs’ resource levels, activity and operational models of care, development of new resource models, development of a user-friendly modelling interface for ED mangers, and production of a final report that identifies policy implications. The anticipated deliverable outcome of this research is the development of an ABF based Emergency Workforce Modelling Tool that will enable ED managers to profile both their workforce and operational models of care. Additionally, the tool will assist with the ability to more accurately inform adequate staffing numbers required in the future, inform planning of expected expenditures and be used for standardisation and benchmarking across similar EDs. Summary of the Findings Within the remit of this review of the literature, the main findings include: 1. EDs are becoming busier and more congested Rising demand, barriers to ED throughput and transitions of care all contribute to ED congestion. In addition requests by organisational managers and the community require continued broadening of the scope of services required of the ED and further increases in demand. As the population live longer with more lifestyle diseases their propensity to require ED care continues to grow. 2. Various models of care within EDs exist Models often vary to account for site specific characteritics to suit staffing profile, ED geographical location (e.g. metropolitan or rural site), and patient demographic profile (e.g. paediatrics, older persons, ethnicity). Existing and new models implemented within EDs often depend on the target outcome requiring change. Generally this is focussed on addressing issues at the input, throughput or output areas of the ED. Even with models targeting similar demographic or illness, the structure and process elements underpinning the model can vary, which can impact on outcomes and variance to the patient and carer experience between and within EDs. Major models of care to manage throughput inefficiencies include: A. Workforce Models of Care focus on the appropriate level of staffing for a given workload to provide prompt, timely and clinically effective patient care within an emergency care setting. The studies reviewed suggest that the early involvement of senior medical decision maker and/or specialised nursing roles such as Emergency Nurse Practitioners and Clinical Initiatives Nurse, primary contact or extended scope Allied Health Practitioners can facilitate patient flow and improve key indicators such as length of stay and reducing the number of those who did not wait to be seen amongst others. B. Operational Models of Care within EDs focus on mechanisms for streaming (e.g. fast-tracking) or otherwise grouping patient care based on acuity and complexity to assist with minimising any throughput inefficiencies. While studies support the positive impact of these models in general, it appears that they are most effective when they are adequately resourced. 3. Various methods of measuring ED activity exist Measuring ED activity requires careful consideration of models of care and staffing profile. Measuring activity requires the ability to account for factors including: patient census, acuity, LOS, intensity of intervention, department skill-mix plus an adjustment for non-patient care time. 4. Gaps in the literature Continued ED growth calls for new and innovative care delivery models that are safe, clinically effective and cost effective. New roles and stand-alone service delivery models are often evaluated in isolation without considering the global and economic impact on staffing profiles. Whilst various models of accounting for and measuring health care activity exist, costing studies and cost effectiveness studies are lacking for EDs making accurate and reliable assessments of care models difficult. There is a necessity to further understand, refine and account for measures of ED complexity that define a workload upon which resources and appropriate staffing determinations can be made into the future. There is also a need for continued monitoring and comprehensive evaluation of newly implemented workforce modelling tools. This research acknowledges those gaps and aims to: • Undertake a comprehensive and integrated whole of department workforce profiling exercise relative to resources in the context of ABF. • Inform workforce requirements based on traditional quantitative markers (e.g. volume and acuity) combined with qualitative elements of ED models of care; • Develop a comprehensive and validated workforce calculation tool that can be used to better inform or at least guide workforce requirements in a more transparent manner.
Resumo:
Aim The International Classification of Diseases, version 10, Australian modification (ICD-10-AM) is used to classify diseases in hospital patients in Australia and New Zealand. ICD-10-AM defines malnutrition as ‘[body mass index] BMI <18.5 kg/m2 or unintentional weight loss of ≥5% with evidence of suboptimal intake resulting in subcutaneous fat loss and/or muscle wasting’. The Australasian Nutrition Care Day Survey (ANCDS) is the most comprehensive survey to evaluate malnutrition prevalence in acute care patients from Australian and New Zealand hospitals. This study determined if malnourished participants were assigned malnutrition-related codes according to ICD-10-AM. Methods The ANCDS recruited acute care patients from 56 hospitals. Hospital-based dietitians evaluated participants' nutritional status using BMI and Subjective Global Assessment (SGA). In keeping with the ICD-10-AM definition, malnutrition was defined as BMI <18.5 kg/m2, SGA-B (moderately malnourished) or SGA-C (severely malnourished). After 3 months, in this prospective cohort study, staff members from each hospital's health information/medical records department provided coding results for malnourished participants. Results Malnutrition was prevalent in 30% (n = 869) of the cohort (n = 2976) and a significantly small number of malnourished patients were coded for malnutrition (n = 162, 19%, P < 0.001). In 21 hospitals, none of the malnourished participants were coded. Conclusions This is the largest study to provide a snapshot of malnutrition coding in Australian and New Zealand hospitals. Findings highlight gaps in malnutrition documentation and/or subsequent coding, which could potentially result in significant loss of casemix-related revenue for hospitals. Dietitians must lead the way in developing structured processes for malnutrition identification, documentation and coding.
Resumo:
Landscape change is an ongoing process even within established urban landscapes. Yet, analyses of fragmentation and deforestation have focused primarily on the conversion of non-urban to urban landscapes in rural landscapes and ignored urban landscapes. To determine the ecological effects of continued urbanization in urban landscapes, tree-covered patches were mapped in the Gwynns Falls watershed (17158.6 ha) in Maryland for 1994 and 1999 to document fragmentation, deforestation, and reforestation. The watershed was divided into lower (urban core), middle (older suburbs), and upper (recent suburbs) subsections. Over the entire watershed a net of 264.5 of 4855.5 ha of tree-covered patches were converted to urban land use-125 new tree-covered patches were added through fragmentation, 4 were added through reforestation, 43 were lost through deforestation, and 7 were combined with an adjacent patch. In addition, 180 patches were reduced in size. In the urban core, deforestation continued with conversion to commercial land use. Because of the lack of vegetation, commercial land uses are problematic for both species conservation and derived ecosystem benefits. In the lower subsection, shape complexity increased for tree-covered patches less than 10 ha. Changes in shape resulted from canopy expansion, planted materials, and reforestation of vacant sites. In the middle and upper subsections, the shape index value for tree-covered patches decreased, indicating simplification. Density analyses of the subsections showed no change with respect to patch densities but pointed out the importance of small patches (≤5 ha) as "stepping stone" to link large patches (e. g., ≥100 ha). Using an urban forest effect model, we estimated, for the entire watershed, total carbon loss and pollution removal, from 1994 to 1999, to be 14,235,889.2 kg and 13,011.4 kg, respectively due to urban land-use conversions.
Improving the performance of nutrition screening through a series of quality improvement initiatives
Resumo:
Background Nutrition screening identifies patients at risk of malnutrition to facilitate early nutritional intervention. Studies have reported incompletion and error rates of 30-90% for a range of commonly used screening tools. This study aims to investigate the incompletion and error rates of 3-Minute Nutrition Screening (3-MinNS) and the effect of quality improvement initiatives in improving the overall performance of the screening tool and the referral process for at risk patients. Methods Annual audits were carried out from 2008-2013 on 4467 patients. Value Stream Mapping, Plan-Do-Check-Act cycle and Root Cause Analysis were used in this study to identify gaps and determine the best intervention. The intervention included 1) implementing a nutrition screening protocol, 2) nutrition screening training, 3) nurse empowerment for online dietetics referral of at-risk cases, 4) closed-loop feedback system and 5) removing a component of 3-MinNS that caused the most error without compromising its sensitivity and specificity. Results Nutrition screening error rates were 33% and 31%, with 5% and 8% blank or missing forms, in 2008 and 2009 respectively. For patients at risk of malnutrition, referral to dietetics took up to 7.5 days, with 10% not referred at all. After intervention, the latter decreased to 7% (2010), 4% (2011) and 3% (2012 and 2013), and the mean turnaround time from screening to referral was reduced significantly from 4.3 ± 1.8 days to 0.3 ± 0.4 days (p < 0.001). Error rates were reduced to 25% (2010), 15% (2011), 7% (2012) and 5% (2013) and percentage of blank or missing forms reduced to and remained at 1%. Conclusion Quality improvement initiatives are effective in reducing the incompletion and error rates of nutrition screening, and led to sustainable improvements in the referral process of patients at nutritional risk.
Resumo:
Nick Shackleton’s research on piston cores from the Iberian margin highlighted the importance of this region for providing high-fidelity records of millennial-scale climate variability, and for correlating climate events from the marine environment to polar ice cores and European terrestrial sequences. During the Integrated Ocean Drilling Program (IODP) Expedition 339, we sought to extend the Iberian margin sediment record by drilling with the D/V JOIDES Resolution. Five holes were cored at Site U1385 using the advanced piston corer (APC) system to a maximum depth of ∼ 155.9 m below sea floor (m b.s.f.). Immediately after the expedition, cores from all holes were analyzed by core scanning X-ray fluorescence (XRF) at 1 cm spatial resolution. Ca/Ti data were used to accurately correlate from hole-to-hole and construct a composite spliced section, containing no gaps or disturbed intervals to 166.5 m composite depth (mcd). A low-resolution (20 cm sample spacing) oxygen isotope record confirms that Site U1385 contains a continuous record of hemipelagic sedimentation from the Holocene to 1.43 Ma (Marine Isotope Stage 46). The sediment profile at Site U1385 extends across the middle Pleistocene transition (MPT) with sedimentation rates averaging ∼ 10 cm kyr−1. Strongprecession cycles in colour and elemental XRF signals provide a powerful tool for developing an orbitally tuned reference timescale. Site U1385 is likely to become an important type section for marine–ice–terrestrial core correlations and the study of orbital- and millennial-scale climate variability.
Resumo:
Background Many studies have found associations between climatic conditions and dengue transmission. However, there is a debate about the future impacts of climate change on dengue transmission. This paper reviewed epidemiological evidence on the relationship between climate and dengue with a focus on quantitative methods for assessing the potential impacts of climate change on global dengue transmission. Methods A literature search was conducted in October 2012, using the electronic databases PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search focused on peer-reviewed journal articles published in English from January 1991 through October 2012. Results Sixteen studies met the inclusion criteria and most studies showed that the transmission of dengue is highly sensitive to climatic conditions, especially temperature, rainfall and relative humidity. Studies on the potential impacts of climate change on dengue indicate increased climatic suitability for transmission and an expansion of the geographic regions at risk during this century. A variety of quantitative modelling approaches were used in the studies. Several key methodological issues and current knowledge gaps were identified through this review. Conclusions It is important to assemble spatio-temporal patterns of dengue transmission compatible with long-term data on climate and other socio-ecological changes and this would advance projections of dengue risks associated with climate change. Keywords: Climate; Dengue; Models; Projection; Scenarios
Resumo:
A new approach of integrated design and delivery solutions (IDDS) aims to radically improve the performance of the construction industries. IDDS builds upon recent trends in the construction industries that have seen the widespread adoption of technologies such as building information modelling (BIM) and innovative processes such as integrated project delivery. However, these innovations are seen to develop in isolation, with little consideration of the overarching interactions between people, process and technology. The IDDS approach is holistic in that it recognizes that it is only through a combination of initiatives such as skill development, process re-engineering, responsive information technology, enhanced interoperability and integrating knowledge management, among others, that radical change can be achieved. To implement IDDS requires step changes in many project aspects, and this gap between current performance and that required for IDDS is highlighted. The research required to bridge the gaps is identified in four major aspects of collaborative processes, workforce skills, integrated information and knowledge management.
Resumo:
Objectives To review the effects of physical activity on health and behavior outcomes and develop evidence-based recommendations for physical activity in youth. Study design A systematic literature review identified 850 articles; additional papers were identified by the expert panelists. Articles in the identified outcome areas were reviewed, evaluated and summarized by an expert panelist. The strength of the evidence, conclusions, key issues, and gaps in the evidence were abstracted in a standardized format and presented and discussed by panelists and organizational representatives. Results Most intervention studies used supervised programs of moderate to vigorous physical activity of 30 to 45 minutes duration 3 to 5 days per week. The panel believed that a greater amount of physical activity would be necessary to achieve similar beneficial effects on health and behavioral outcomes in ordinary daily circumstances (typically intermittent and unsupervised activity). Conclusion School-age youth should participate daily in 60 minutes or more of moderate to vigorous physical activity that is developmentally appropriate, enjoyable, and involves a variety of activities.
Resumo:
A mixed species reforestation program known as the Rainforestation Farming system was undertaken in the Philippines to develop forms of farm forestry more suitable for smallholders than the simple monocultural plantations commonly used then. In this study, we describe the subsequent changes in stand structure and floristic composition of these plantations in order to learn from the experience and develop improved prescriptions for reforestation systems likely to be attractive to smallholders. We investigated stands aged from 6 to 11 years old on three successive occasions over a 6 year period. We found the number of species originally present in the plots as trees >5 cm dbh decreased from an initial total of 76 species to 65 species at the end of study period. But, at the same time, some new species reached the size class threshold and were recruited into the canopy layer. There was a substantial decline in tree density from an estimated stocking of about 5000 trees per ha at the time of planting to 1380 trees per ha at the time of the first measurement; the density declined by a further 4.9% per year. Changes in composition and stand structure were indicated by a marked shift in the Importance Value Index of species. Over six years, shade-intolerant species became less important and the native shade-tolerant species (often Dipterocarps) increased in importance. Based on how the Rainforestation Farming plantations developed in these early years, we suggest that mixed-species plantations elsewhere in the humid tropics should be around 1000 trees per ha or less, that the proportion of fast growing (and hence early maturing) trees should be about 30–40% of this initial density and that any fruit tree component should only be planted on the plantation margin where more light and space are available for crowns to develop.
Resumo:
Objective To explore, in depth, the literature for evidence supporting asthma interventions delivered within primary schools and to identify any “gaps” in this research area. Methods A literature search using electronic search engines (i.e. Medline, PubMed, Education Resources Information Center (ERIC), International Pharmaceutical Abstracts (IPA), Cumulative Index to Nursing and Allied Health Literature (CINAHL), Embase and Informit) and the search terms “asthma”, “asthma intervention” and “school-based asthma education program” (and derivatives of these keywords) was conducted. Results Twenty-three articles met the inclusion criteria; of these eight were Randomised Controlled Trials. There was much variety in the type, content, delivery and outcome measures in these 23 studies. The most common intervention type was asthma education delivery. Most studies demonstrated improvement in clinical and humanistic markers, for example, asthma symptoms medication use (decrease in reliever medication use or decrease in the need for rescue oral steroid), inhaler use technique and spacer use competency, lung function and quality of life. Relatively few studies explored the effect of the intervention on academic outcomes. Most studies did not report on the sustainability or cost effectiveness of the intervention tested. Another drawback in the literature was the lack of details about the intervention and inconsistency in instruments selected for measuring outcomes. Conclusion School-based asthma interventions regardless of their heterogeneity have positive clinical, humanistic, health economical and academic outcomes.
Resumo:
Controlled self-organized growth of vertically aligned carbon nanocone arrays in a radio frequency inductively coupled plasma-based process is studied. The experiments have demonstrated that the gaps between the nanocones, density of the nanocone array, and the shape of the nanocones can be effectively controlled by the process parameters such as gas composition (hydrogen content) and electrical bias applied to the substrate. Optical measurements have demonstrated lower reflectance of the nanocone array as compared with a bare Si wafer, thus evidencing their potential for the use in optical devices. The nanocone formation mechanism is explained in terms of redistribution of surface and volumetric fluxes of plasma-generated species in a developing nanocone array and passivation of carbon in narrow gaps where the access of plasma ions is hindered. Extensive numerical simulations were used to support the proposed growth mechanism.
Resumo:
Using a multiple plasma deposition-annealing (MDA) technique, we have fabricated an Au nanoisland-based thin film nanoresistor with a very low temperature coefficient of electrical resistivity in a cryogenic-to-room temperature range of 10 to 300 K. The nanoislanded gold film was deposited on a SiO2/Si wafer (500 nm SiO2 thickness) between two 300 nm thick Au electrodes which were separated by 100 m. A sophisticated selection of the thickness of the nanoislanded gold film, the annealing temperature, as well as the number of deposition/annealing cycles resulted in the fabrication of a nanoresistor with a temperature coefficient of electrical resistivity of 2.1 × 10-3 K-1 and the resistivity deviation not exceeding 2% in a cryogenic-to-room temperature range. We have found that the constant resistivity regime of the nanoisland-based thin film nanoresistor corresponds to a minimized nanoisland activation energy (approximately 0.3 meV). This energy can be minimized by reducing the nearest neighbor distance and increasing the size of the Au nanoislands in the optimized nanoresistor structure. It is shown that the constant resistivity nanoresistor operates in the regime where the thermally activated electron tunneling is compensated by the negative temperature dependence of the metallic-type conductivity of nanoislands. Our results are relevant to the development of commercially viable methods of nanoresistor production for various nanoelectronics-based devices. The proposed MDA technique also provides the opportunity to fabricate large arrays of metallic nanoparticles with controllable size, shapes and inter-nanoparticle gaps.