981 resultados para Atomic motions
Resumo:
New basis sets of the atomic natural orbital (ANO) type have been developed for the lanthanide atoms La-Lu. The ANOs have been obtained from the average density matrix of the ground and lowest excited states of the atom, the positive ions, and the atom in an electric field. Scalar relativistic effects are included through the use of a Douglas-Kroll-Hess Hamiltonian. Multiconfigurational wave functions have been used with dynamic correlation included using second-order perturbation theory (CASSCF/CASPT2). The basis sets are applied in calculations of ionization energies and some excitation energies. Computed ionization energies have an accuracy better than 0.1 eV in most cases. Two molecular applications are inluded as illustration: the cerium diatom and the LuF3 molecule. In both cases it is shown that 4f orbitals are not involved in the chemical bond in contrast to an earlier claim for the latter molecule.
Resumo:
The protonation effect on the vibrational and electronic spectra of 4-aminoazobenzene and 4-(dimethylamino)azobenzene was investigated by resonance Raman spectroscopy, and the results were discussed on the basis of quantum-chemical calculations. Although this class of molecular systems has been investigated in the past concerning the azo-hydrazone tautomerism, the present work is the first to use CASSCF/CASPT2 calculations to unveil the structure of both tautomers as well the nature of the molecular orbitals involved in chromophoric moieties responsible for the resonance Raman enhancement patterns. More specifically both the resonance Raman and theoretical results show clearly that in the neutral species, the charge transfer transition involves mainly the azo moiety, whereas in the protonated forms there is a great difference, depending on the tautomer. In fact, for the azo tautomer the transition is similar to that observed in the corresponding neutral species, whereas in the hydrazone tautomer such a transition is much more delocalized due to the contribution of the quinoid structure. The characterization of protonated species and the understanding of the tautomerization mechanism are crucial for controlling molecular properties depending on the polarity and pH of the medium.
Resumo:
A fast and reliable method for the direct determination of iron in sand by solid sampling graphite furnace atomic absorption spectrometry was developed. A Zeeman-effect 3-field background corrector was used to decrease the sensitivity of spectrometer measurements. This strategy allowed working with up to 200 mu g of samples, thus improving the representativity. Using samples with small particle sizes (1-50 mu m) and adding 5 mu g Pd as chemical modifier, it was possible to obtain suitable calibration curves with aqueous reference solutions. The pyrolysis and atomization temperatures for the optimized heating program were 1400 and 2500 degrees C, respectively. The characteristic mass, based on integrated absorbance, was 56 pg, and the detection limits, calculated considering the variability of 20 consecutive measurements of platform inserted without sample was 32 pg. The accuracy of the procedure was checked with the analysis of two reference materials (IPT 62 and 63). The determined concentrations were in agreement with the recommended values (95% confidence level). Five sand samples were analyzed, and a good agreement (95% confidence level) was observed using the proposed method and conventional flame atomic absorption spectrometry. The relative standard deviations were lower than 25% (n = 5). The tube and boat platform lifetimes were around 1000 and 250 heating cycles, respectively.
Resumo:
One method using a solid sampling device for the direct determination of Cr and Ni in fresh and used lubricating oils by graphite furnace atomic absorption spectrometry are proposed. The high organic content in the samples was minimized using a digestion step at 400 degrees C in combination with an oxidant mixture 1.0% (v v(-1)) HNO3+15% (v v(-1)) H2O2+0.1% (m v(-1)) Triton X-100 for the in situ digestion. The 3-field mode Zeeman-effect allowed the spectrometer calibration up to 5 ng of Cr and Ni. The quantification limits were 0.86 mu g g(-1) for Cr and 0.82 mg g(-1) for Ni, respectively. The analysis of reference materials showed no statistically significant difference between the recommended values and those obtained by the proposed methods.
Resumo:
Electromagnetically induced transparency (EIT) is an important tool for controlling light propagation and nonlinear wave mixing in atomic gases with potential applications ranging from quantum computing to table top tests of general relativity. Here we consider EIT in an atomic Bose-Einstein condensate (BEC) trapped in a double-well potential. A weak probe laser propagates through one of the wells and interacts with atoms in a three-level Lambda configuration. The well through which the probe propagates is dressed by a strong control laser with Rabi frequency Omega(mu), as in standard EIT systems. Tunneling between the wells at the frequency g provides a coherent coupling between identical electronic states in the two wells, which leads to the formation of interwell dressed states. The macroscopic interwell coherence of the BEC wave function results in the formation of two ultranarrow absorption resonances for the probe field that are inside of the ordinary EIT transparency window. We show that these new resonances can be interpreted in terms of the interwell dressed states and the formation of a type of dark state involving the control laser and the interwell tunneling. To either side of these ultranarrow resonances there is normal dispersion with very large slope controlled by g. We discuss prospects for observing these ultranarrow resonances and the corresponding regions of high dispersion experimentally.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The adhesion force between an atomic force microscope (AFM) tip and sample surfaces, mica and quartz substrates, was measured in air and water. The force curves show that the adhesion has a strong dependence on both the surface roughness and the environmental conditions surrounding the sample. The variability of the adhesion force was examined in a series of measurements taken at the same point, as well as at different places on the sample surface. The adhesion maps obtained from the distribution of the measured forces indicated regions contaminated by either organic compounds or adsorbed water. Using simple mathematical expressions we could quantitatively predict the adhesion force behavior in both air and water. The experimental results are in good agreement with theoretical calculations, where the adhesion forces in air and water were mostly associated with capillary and van der Waals forces, respectively. A small long-range repulsive force is also observed in water due to the overlapping electrical double-layers formed on both the tip and sample surfaces.
Resumo:
The influence of small amounts of bovine serum albumin (BSA) (nM concentration) on the lateral organization of phospholipid monolayers at the air-water interface and transferred onto solid substrates as one-layer Langmuir-Blodgett (LB) films was investigated. The kinetics of adsorption of BSA onto the phospholipid monolayers was monitored with surface pressure isotherms in a Langmuir trough, for the zwitterionic dipalmitoylphosphatidyl ethanolamine (N,N-dimethyl-PE) and the anionic dimyristoylphosphatidic acid (DMPA). A monolayer of N,N-dimethyl-PE or DMPA incorporating BSA was transferred onto a solid substrate using the Langmuir-Blodgett technique. Atomic force microscopy (AFM) images of one-layer LB films displayed protein-phospholipid domains, whose morphology was characterized using dynamic scaling theories to calculate roughness exponents. For DMPA-BSA films the surface is characteristic of self-affine fractals, which may be described with the Kardar-Parisi-Zhang (KPZ) equation. on the other hand, for N,N-dimethyl-PE-BSA films, the results indicate a relatively flat surface within the globule. The height profile and the number and size of globules varied with the type of phospholipid. The overall results, from kinetics of adsorption on Langmuir monolayers and surface morphology in LB films, could be interpreted in terms of the higher affinity of BSA to the anionic DMPA than to the zwitterionic N,N-dimethyl-PE. Furthermore, the effects from such small amounts of BSA in the monolayer point to a cooperative response of DMPA and N,N-dimethyl-PE monolayers to the protein. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A tungsten carbide coating on the integrated platform of a transversely heated graphite atomizer was used as a modifier for the direct determination of Se in soil extracts by graphite furnace atomic absorption spectrometry. Diethylenetriaminepentaacetic acid (0.0050 mol L-1) plus ammonium hydrogencarbonate (1.0 mol L-1) extracted predominantly available inorganic selenate from soil. The formation of a large amount of carbonaceous residue inside the atomizer was avoided with a first pyrolysis step at 600 degreesC assisted by air during 30 s. For 20 muL of soil extracts delivered to the atomizer and calibration by matrix matching, an analytical curve (10.0-100 mug of L-1) with good linear correlation (r = 0.999) between integrated absorbance and analyte concentration was established. The characteristic mass was similar to63 pg of Se, and the lifetime of the tube was similar to750 firings. The limit of detection was 1.6 mug L-1, and the relative standard deviations (n = 12) were typically <4% for a soil extract containing 50 mug of L-1. The accuracy of the determination of Se was checked for soil samples by means of addition/recovery tests. Recovery data of Se added to four enriched soil samples varied from 80 to 90% and indicated an accurate method.
Resumo:
We imaged pores on the surface of the cell wall of three different industrial strains of Saccharomyces cerevisiae using atomic force microscopy. The pores could be enlarged using 10 mM diamide, an SH residue oxidant that attacks surface proteins. We found that two strains showed signs of oxidative damage via changes in density and diameter of the surface pores. We found that the German strain was resistant to diamide induced oxidative damage, even when the concentration of the oxidant was increased to 50 mM. The normal pore size found on the cell walls of American strains had diameters of about 200nm. Under conditions of oxidative stress the diameters changed to 400nm.This method may prove to be a useful rapid screening process (45-60 min) to determine which strains are oxidative resistant, as well as being able to screen for groups of yeast that are sensitive to oxidative stress. This rapid screening tool may have direct applications in molecular biology (transference of the genes to inside of living cells) and biotechnology (biotransformations reactions to produce chiral synthons in organic chemistry.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)