933 resultados para Analog-to-digital converter (ADC)
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial
Resumo:
This paper presents a programable perturbation and observation control implementation for a wind generation system and its power electronic converter. The objective of the method in this particular application is to adjust the power delivered to charge a battery to its maximum and allowable value, function of the real values of several parameters and their continuous variation, the most important the wind velocity and the turbine efficiency. Also, to improve the power throughput and to use the turbine and generator marginal zones of operation, an unusual power converter is used, allowing a wide range for the input voltage values. The implemented control is continuously measuring the actual power and looks for a new and powerful operation point. © 2014 IEEE.
Resumo:
This paper presents a micro power light energy harvesting system for indoor environments. Light energy is collected by amorphous silicon photovoltaic (a-Si:H PV) cells, processed by a switched capacitor (SC) voltage doubler circuit with maximum power point tracking (MPPT), and finally stored in a large capacitor. The MPPT fractional open circuit voltage (V-OC) technique is implemented by an asynchronous state machine (ASM) that creates and dynamically adjusts the clock frequency of the step-up SC circuit, matching the input impedance of the SC circuit to the maximum power point condition of the PV cells. The ASM has a separate local power supply to make it robust against load variations. In order to reduce the area occupied by the SC circuit, while maintaining an acceptable efficiency value, the SC circuit uses MOSFET capacitors with a charge sharing scheme for the bottom plate parasitic capacitors. The circuit occupies an area of 0.31 mm(2) in a 130 nm CMOS technology. The system was designed in order to work under realistic indoor light intensities. Experimental results show that the proposed system, using PV cells with an area of 14 cm(2), is capable of starting-up from a 0 V condition, with an irradiance of only 0.32 W/m(2). After starting-up, the system requires an irradiance of only 0.18 W/m(2) (18 mu W/cm(2)) to remain operating. The ASM circuit can operate correctly using a local power supply voltage of 453 mV, dissipating only 0.085 mu W. These values are, to the best of the authors' knowledge, the lowest reported in the literature. The maximum efficiency of the SC converter is 70.3 % for an input power of 48 mu W, which is comparable with reported values from circuits operating at similar power levels.
Resumo:
This paper presents a programable perturbation and observation control implementation for a wind generation system and its power electronic converter. The objective of the method in this particular application is to adjust the power delivered to charge a battery to its maximum and allowable value, function of the real values of several parameters and their continuous variation, the most important the wind velocity and the turbine efficiency. Also, to improve the power throughput and to use the turbine and generator marginal zones of operation, an unusual power converter is used, allowing a wide range for the input voltage values. The implemented control is continuously measuring the actual power and looks for a new and powerful operation point. © 2014 IEEE.
Resumo:
In an increasingly competitive and globalized world, companies need effective training methodologies and tools for their employees. However, selecting the most suitable ones is not an easy task. It depends on the requirements of the target group (namely time restrictions), on the specificities of the contents, etc. This is typically the case for training in Lean, the waste elimination manufacturing philosophy. This paper presents and compares two different approaches to lean training methodologies and tools: a simulation game based on a single realistic manufacturing platform, involving production and assembly operations that allows learning by playing; and a digital game that helps understand lean tools. This paper shows that both tools have advantages in terms of trainee motivation and knowledge acquisition. Furthermore, they can be used in a complementary way, reinforcing the acquired knowledge.
Resumo:
This paper presents the design and compares the performance of linear, decoupled and direct power controllers (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFC). A simplified steady-state model of the matrix converter-based UPFC fitted with a modified Venturini high-frequency pulse width modulator is first used to design the linear controllers for the transmission line active (P) and reactive (Q) powers. In order to minimize the resulting cross coupling between P and Q power controllers, decoupled linear controllers (DLC) are synthesized using inverse dynamics linearization. DPC are then developed using sliding-mode control techniques, in order to guarantee both robustness and decoupled control. The designed P and Q power controllers are compared using simulations and experimental results. Linear controllers show acceptable steady-state behaviour but still exhibit coupling between P and Q powers in transient operation. DLC are free from cross coupling but are parameter sensitive. Results obtained by DPC show decoupled power control with zero error tracking and faster responses with no overshoot and no steady-state error. All the designed controllers were implemented using the same digital signal processing hardware.
Resumo:
Debugging electronic circuits is traditionally done with bench equipment directly connected to the circuit under debug. In the digital domain, the difficulties associated with the direct physical access to circuit nodes led to the inclusion of resources providing support to that activity, first at the printed circuit level, and then at the integrated circuit level. The experience acquired with those solutions led to the emergence of dedicated infrastructures for debugging cores at the system-on-chip level. However, all these developments had a small impact in the analog and mixed-signal domain, where debugging still depends, to a large extent, on direct physical access to circuit nodes. As a consequence, when analog and mixed-signal circuits are integrated as cores inside a system-on-chip, the difficulties associated with debugging increase, which cause the time-to-market and the prototype verification costs to also increase. The present work considers the IEEE1149.4 infrastructure as a means to support the debugging of mixed-signal circuits, namely to access the circuit nodes and also an embedded debug mechanism named mixed-signal condition detector, necessary for watch-/breakpoints and real-time analysis operations. One of the main advantages associated with the proposed solution is the seamless migration to the system-on-chip level, as the access is done through electronic means, thus easing debugging operations at different hierarchical levels.
Resumo:
Hoje em dia as fontes de alimentação possuem correção do fator de potência, devido às diversas normas regulamentares existentes, que introduziram grandes restrições no que respeita à distorção harmónica (THD) e fator de potência (FP). Este trabalho trata da análise, desenvolvimento e implementação de um Pré-Regulador de fator de potência com controlo digital. O controlo digital de conversores com recurso a processamento digital de sinal tem vindo a ser ao longo dos últimos anos, objeto de investigação e desenvolvimento, estando constantemente a surgirem modificações nas topologias existentes. Esta dissertação tem como objetivo estudar e implementar um Pré-Regulador Retificador Boost e o respetivo controlo digital. O controlo do conversor é feito através da técnica dos valores médios instantâneos da corrente de entrada, desenvolvido através da linguagem de descrição de hardware VHDL (VHSIC HDL – Very High Speed Integrated Circuit Hardware Description Language) e implementado num dispositivo FPGA (Field Programmable Gate Array) Spartan-3E. Neste trabalho são apresentadas análises matemáticas, para a obtenção das funções de transferência pertinentes ao projeto dos controladores. Para efetuar este controlo é necessário adquirir os sinais da corrente de entrada, tensão de entrada e tensão de saída. O sinal resultante do módulo de controlo é um sinal de PWM com valor de fator de ciclo variável ao longo do tempo. O projeto é simulado e validado através da plataforma MatLab/Simulink e PSIM, onde são apresentados resultados para o regime permanente e para transitórios da carga e da tensão de alimentação. Finalmente, o Pré-Regulador Retificador Boost controlado de forma digital é implementado em laboratório. Os resultados experimentais são apresentados para validar a metodologia e o projeto desenvolvidos.
Resumo:
Dissertação apresentada na faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 232 – 235, Seattle, EUA
Resumo:
Proceedings of IEEE, ISCAS 2003, Vol.I, pp. 877-880
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Eletrotécnica Ramo de Automação e Eletrónica Industrial
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
Societal changes have, throughout history, pushed the long-established boundaries of education across all grade levels. Technology and media merge with education in a continuous complex social process with human consequences and effects. We, teachers, can aspire to understand and interpret this volatile context that is being redesigned at the same time society itself is being reshaped as a result of the technological evolution. The language- learning classroom is not impenetrable to these transformations. Rather, it can perhaps be seen as a playground where teachers and students gather to combine the past and the present in an integrated approach. We draw on the results from a previous study and argue that Digital Storytelling as a Process is capable of aggregating and fostering positive student development in general, as well as enhancing interpersonal relationships and self-knowledge while improving digital literacy. Additionally, we establish a link between the four basic language-learning skills and the Digital Storytelling process and demonstrate how these converge into what can be labeled as an integrated language learning approach.
Resumo:
Field lab: Business project