876 resultados para ANTISENSE OLIGONUCLEOTIDES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

10.1002/hlca.200390311.abs A series of oligonucleotides containing (5′S)-5′-C-butyl- and (5′S)-5′-C-isopentyl-substituted 2′-deoxyribonucleosides were designed, prepared, and characterized with the intention to explore alkyl-zipper formation between opposing alkyl chains across the minor groove of oligonucleotide duplexes as a means to modulate DNA-duplex stability. From four possible arrangements of the alkyl groups that differ in the density of packing of the alkyl chains across the minor groove, three (duplex types I–III, Fig. 2) could experimentally be realized and their duplex-forming properties analyzed by UV-melting curves, CD spectroscopy, and isothermal titration calorimetry (ITC), as well as by molecular modeling. The results show that all arrangements of alkyl residues within the minor groove of DNA are thermally destabilizing by 1.5–3°/modification in Tm. We found that, within the proposed duplexes with more loosely packed alkyl groups (type-III duplexes), accommodation of alkyl residues without extended distorsion of the helical parameters of B-DNA is possible but does not lead to higher thermodynamic stability. The more densely packed and more unevenly distributed arrangement (type-II duplexes) seems to suffer from ecliptic positioning of opposite alkyl groups, which might account for a systematic negative contribution to stability due to steric interactions. The decreased stability in the type-III duplexes described here may be due either to missing hydrophobic interactions of the alkyl groups (not bulky enough to make close contacts), or to an overcompensation of favorable alkyl-zipper formation presumably by loss of structured H2O in the minor groove.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The base modified nucleoside dBP, carrying a non-hydrogen-bonding non-shape complementary base was incorporated into oligonucleotides (Brotschi, C.; Haberli, A.; Leumann C.J. Angew. Chem. Int. Ed. 2001, 40, 3012-3014). This base was designed to coordinate transition metal ions into well defined positions within a DNA double helix. Melting experiments revealed that the stability of a dBP:dBP base couple in a DNA duplex is similar to a dG:dC base pair even in the absence of transition metal ions. In the presence of transition metal ions, melting experiments revealed a decrease in duplex stability which is on a similar order for all metal ions (Mn2+, Cu2+, Zn2+, Ni2+) tested

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently reported on the synthesis and pairing properties of the DNA analogue bicyclo[3.2.1]amide DNA (bca-DNA). In this analogue the nucleobases are attached via a linear, 4-bond amide-linker to a structurally preorganized sugar-phosphate backbone unit. To define the importance of the degree of structural rigidity of the bca-backbone unit on the pairing properties, we designed the structurally simpler cyclopentane amide DNA (cpa-DNA), in which the bicyclo[3.2.1]-scaffold was reduced to a cyclopentane unit while the base-linker was left unchanged. Here we present a synthetic route to the enantiomerically pure cpa-DNA monomers and the corresponding phosphoramidites containing the bases A and T, starting from a known, achiral precursor in 9 and 12 steps, respectively. Fully modified oligodeoxynucleotides were synthesized by standard solid-phase oligonucleotide chemistry, and their base-pairing properties with complementary oligonucleotides of the DNA-, RNA-, bca-DNA-, and cpa-DNA-backbones were assessed by UV melting curves and CD-spectroscopic methods. We found that cpa-oligoadenylates form duplexes with complementary DNA that are less stable by -2.7 degrees C/mod. compared to DNA. The corresponding cpa-oligothymidylates do not participate in complementary base-pairing with any of the investigated backbone systems except with its own (homo-duplex). As its congener bca-DNA, cpa-DNA seems to prefer left-handed helical duplex structures with DNA or with itself as indicated by the CD spectra

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tricyclo-DNA belongs to the family of conformationally restricted oligodeoxynucleotide analogues. It differs structurally from DNA by an additional ethylene bridge between the centers C(3') and C(5') of the nucleosides, to which a cyclopropane unit is fused for further enhancement of structural rigidity. The synthesis of the hitherto unknown tricyclodeoxynucleosides containing the bases cytosine and guanine and of the corresponding phosphoramidite building blocks is described, as well as a structural description of a representative of an alpha- and a beta-tricyclodeoxynucleoside by X-ray analysis. Tricyclodeoxynucleoside building blocks of all four bases were used for the synthesis of fully modified mixed-base oligonucleotides. Their Watson-Crick pairing properties with complementary DNA, RNA, and with itself were investigated by UV melting curves, CD spectroscopy, and molecular modeling. Tricyclo-DNA was found to be a very stable Watson-Crick base-pairing system. A UV melting curve analysis of the decamers tcd(pcgtgacagtt) and tcd(paactgtcacg) showed increased thermal stabilities of up to DeltaT(m)/mod. = +1.2 degrees C with complementary DNA and +2.4 degrees C with complementary RNA. With itself, tricyclo-DNA showed an increase in stability of +3.1 degrees C/base pair relative to DNA. Investigations into the thermodynamic properties of these decamers revealed an entropic stabilization and an enthalpic destabilization for the tricyclo-DNA/DNA duplexes. CD spectroscopic structural investigations indicated that tricyclo-DNA containing duplexes preferrably exist in an A-conformation, a fact which is in agreement with results from molecular modeling

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of chimaeric DNA/RNA triplex-forming oligonucleotides (TFOs) with identical base-sequence but varying sequential composition of the sugar residues were prepared. The structural, kinetic and thermodynamic properties of triplex formation with their corresponding double-helical DNA target were investigated by spectroscopic methods. Kinetic and thermodynamic data were obtained from analysis of non-equilibrium UV-melting- and annealing curves in the range of pH 5.1 to 6.7 in a 10 mM citrate/phosphate buffer containing 0.1M NaCl and 1 mM EDTA. It was found that already single substitutions of ribo- for deoxyribonucleotides in the TFOs greatly affect stability and kinetics of triplex formation in a strongly sequence dependent manner. Within the sequence context investigated, triplex stability was found to increase when deoxyribonucleotides were present at the 5'-side and ribonucleotides in the center of the TFO. Especially the substitution of thymidines for uridines in the TFO was found to accelerate both, the association and dissociation process, in a strongly position-dependent way. Differential structural information on triplexes and TFO single-strands was obtained from CD-spectroscopy and gel mobility experiments. Only minor changes were observed in the CD spectra of the triplexes at all pH values investigated, and the electrophoretic mobility was nearly identical in all cases, indicating a high degree of structural similarity. In contrast, the single-stranded TFOs showed high structural variability as determined in the same way. The results are discussed in the context of the design of TFOs for therapeutic or biochemical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design, synthesis and base-pairing properties of bicyclo[3.2.1]amide-(bca)DNA, a novel phosphodiester based DNA analogue, is reported. This analogue consists of a conformationally constrained backbone entity which emulates a B-DNA geometry, to which the nucleobases were attached via an extended, acyclic amide linker. Homobasic adenine-containing bca-decamers form duplexes with complementary oligonucleotides containing the bca-, the DNA the RNA and, surprisingly, also the L-RNA backbone. UV- and CD-spectroscopic investigations revealed the duplexes with D- or L-complement to be of similar stability and enantiomorphic in structure. Bca-oligonucleotides containing all four bases form strictly antiparallel, left-handed complementary duplexes with itself and complementary DNA but not with RNA. Base-mismatch discrimination is comparable to that of DNA while the overall thermal stabilities of bca-oligonucleotide duplexes are inferior relative to that of DNA or RNA. A detailed molecular modeling study of left- and right-handed bca-DNA containing duplexes showed only minor changes in the backbone structure and revealed a structural switch around the base-linker unit to be responsible for the generation of enantiomorphic duplex structures. The obtained data are discussed with respect to the structural and energetic role of the ribofuranose entities in DNA and RNA association

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A systematic investigation of a series of triplex forming oligonucleotides (TFOs) containing alpha- and beta-thymidine, alpha- and beta-N7-hypoxanthine, and alpha- and beta- N7 and N9 aminopurine nucleosides, designed to bind to T-A inversion sites in DNA target sequences was performed. Data obtained from gel mobility assays indicate that t-A recognition in the antiparallel triple-helical binding motif is possible if the nucleoside alpha N9-aminopurine is used opposite to the inversion site in the TFO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stability of a triple helix formed between a DNA duplex and an incoming oligonucleotide strand strongly depends on the solvent conditions and on intrinsic chemical and conformational factors. Attempts to increase triple helix stability in the past included chemical modification of the backbone, sugar ring, and bases in the third strand. However, the predictive power of such modifications is still rather poor. We therefore developed a method that allows for rapid screening of conformationally diverse third strand oligonucleotides for triplex stability in the parallel pairing motif to a given DNA double helix sequence. Combinatorial libraries of oligonucleotides of the requisite (fixed) base composition and length that vary in their sugar unit (ribose or deoxyribose) at each position were generated. After affinity chromatography against their corresponding immobilized DNA target duplex, utilizing a temperature gradient as the selection criterion, the oligonucleotides forming the most stable triple helices were selected and characterized by physicochemical methods. Thus, a series of oligonucleotides were identified that allowed us to define basic rules for triple helix stability in this conformationally diverse system. It was found that ribocytidines in the third strand increase triplex stability relative to deoxyribocytidines independently of the neighboring bases and position along the strand. However, remarkable sequence-dependent differences in stability were found for (deoxy)thymidines and uridines

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Why Pentose- and Not Hexose-Nucleic Acids? Purine-Purine Pairing in homo-DNA: Guanine,Isoguanine, 2,6-Diaminopurine, and Xanthine This paper concludes the series of reports in this journal [1–4] on the chemistry of homo-DNA, the constitutionally simplifie dmodel system of hexopyranosyl-(6′ → 4′)-oligonucleotide systems stidued in our laboratory as potentially natural-nucleic-acid alternatives in the context of a chemical aetiology of nucleic-acid structure. The report describes the synthesis and pairing properties of homo-DNA oligonucleotides which contain as nucleobases exclusively purines, and gives, together with part III of the series [3], a survey of what we know today about purine-purine pairingin homo-DNA. In addition, the paper discusses those aspects of the chemistry of homo-DNA which, we think, influence the way how some of the structural features of DNA (and RNA) are to be interpreted on a qualitative level. Purine-purine pairing occurs in the homo-DNA domain in great variety. Most prominent is a novel tridentate Watson-Crick pair between guanine and isoguanine, as well as one between 2,6-diaminopurine and xanthinone, both giving rise to very stable duplexes containing the all-purine strands in antiparallel orientation. For the guanine-isoguanine pair, constitutional assignment is based on temperature-dependent UV and CD spectroscopy of various guanine- and isoguanine-containg duplexes in comparison with duplexes known to be paired in the reverse guanine is replaced by 7-carbauguanine. Isoguanine and 2,6-diaminopurine also have the capability of self-pariring in the reverse-Hoogsteen mode, as previously observed for adenine and guanine [3]. In this type of pairing, the interchangeably. Fig. 36 provides an overall survey of the relative strength of pairing in all possible purine-purine combinations. Watson-Crick pairing of isoguanine with guanine demands the former to participate in its 3H-tautomeric form; hitherto this specific tautomer had not been considered in the pairing chemistry of isoguanine. Whereas (cumulative) purine-purine pairing in DNA (reverse-Hoogsten or Hoogsteen) seems to occur in triplexes and tetrapalexes only, its occurrence in duplexes in a characteristic feature of homo-DNA chemistry. The occurrence of purine-purine Watson-Crick base pairs is probably a consequence of homo-DNA's quasi-linear ladder structure [1][4]. In a double helix, the distance between the two sugar C-atoms, on which a base pair is anchored, is expected to be constrained by the dimensions of the helix; in a linear duplex, however, there would be no restrictions with regard to base-pair length. Homo-DNA's ladder-like model also allows one to recognize one of the reasons why nucleic-acid duplexes prefer to pair in antiparallel, rather than parallel strand orientation: in homo-DNA duplexes, (averaged) backbone and base pair axes are strongly inclined toward one another [4]; the stronger this inclination, the higher the preference for antiparallel strand orientation is expected to be (Fig. 16). In retrospect, homo-DNA turns out to be one of the first artificial oligonucleotide systems (cf. Footnote 65) to demonstrate in a comprehensive way that informational base pairing involving purines and pyrimidines is not a capability unique to ribofuranosyl systems. Stability and helical shape of pairing complexes are not necessary conditions of one another; it is the potential for extensive conformational cooperativity of hte backbone structure with respect to the constellational demands of base pairing and base stacking that determines whether or nor a given type of base-carrying backbone structure is an informational pairing system. From the viewpoint of the chemical aetiology of nucleic-acid structure, which inspired our investigations on hexopyranosyl-(6′ → 4′)-oligonucleotide systems in the first place, the work on homo-DNA is only an extensive model study, because homo-DNA is not to be considered a potential natural-nucleic-acid altenratie. In retrospect, it seems fortunate that the model study was carried out, because without it we could hardly have comprehended the pairing behavior of the proper nucleic-acid alternatives which we have studied later and which will be discussed in Part VI of this series. The English footnotes to Fig. 1–49 provide an extension of this summary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

10.1002/hlca.19950780816.abs A conformational analysis of the (3′S,5′R)-2′-deoxy-3′,5′-ethano-α-D-ribonucleosides (a-D-bicyclodeoxynucleosides) based on the X-ray analysis of N4-benzoyl-α-D-(bicyclodeoxycytidine) 6 and on 1H-NMR analysis of the α-D-bicyclodeoxynucleoside derivatives 1-7 reveals a rigid sugar structure with the furanose units in the l′-exo/2′-endo conformation and the secondary OH groups on the carbocyclic ring in the pseudoequatorial orientation. Oligonucleotides consisting of α-D-bicyclothymidine and α-D-bicyclodeoxyadenosine were successfully synthesized from the corresponding nucleosides by phosphoramidite methodology on a DNA synthesizer. An evaluation of their pairing properties with complementary natural RNA and DNA by means of UV/melting curves and CD spectroscopy show the following characteristics: i) α-bcd(A10) and α-bcd(T10) (α = short form of α-D)efficiently form complexes with complementary natural DNA and RNA. The stability of these hybrids is comparable or slightly lower as those with natural β-d(A10) or β-d(T10)( β = short form ofβ-D). ii) The strand orientation in α-bicyclo-DNA/β-DNA duplexes is parallel as was deduced from UV/melting curves of decamers with nonsymmetric base sequences. iii) CD Spectroscopy shows significant structural differences between α-bicyclo-DNA/β-DNA duplexes compared to α-DNA/β-DNA duplexes. Furthermore, α-bicyclo-DNA is ca. 100-fold more resistant to the enzyme snake-venom phosphodiesterase with respect to β-DNA and about equally resistant as α-DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The polypeptide composition of the U7 small nuclear ribonucleoprotein (snRNP) involved in histone messenger RNA (mRNA) 3' end formation has recently been elucidated. In contrast to spliceosomal snRNPs, which contain a ring-shaped assembly of seven so-called Sm proteins, in the U7 snRNP the Sm proteins D1 and D2 are replaced by U7-specific Sm-like proteins, Lsm10 and Lsm11. This polypeptide composition and the unusual structure of Lsm11, which plays a role in histone RNA processing, represent new themes in the biology of Sm/Lsm proteins. Moreover this structure has important consequences for snRNP assembly that is mediated by two complexes containing the PRMT5 methyltransferase and the SMN (survival of motor neurons) protein, respectively. Finally, the ability to alter this polypeptide composition by a small mutation in U7 snRNA forms the basis for using modified U7 snRNA derivatives to alter specific pre-mRNA splicing events, thereby opening up a new way for antisense gene therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most cases of Duchenne muscular dystrophy are caused by dystrophin gene mutations that disrupt the mRNA reading frame. Artificial exclusion (skipping) of a single exon would often restore the reading frame, giving rise to a shorter, but still functional dystrophin protein. Here, we analyzed the ability of antisense U7 small nuclear (sn)RNA derivatives to alter dystrophin pre-mRNA splicing. As a proof of principle, we first targeted the splice sites flanking exon 23 of dystrophin pre-mRNA in the wild-type muscle cell line C2C12 and showed precise exon 23 skipping. The same strategy was then successfully adapted to dystrophic immortalized mdx muscle cells where exon-23-skipped dystrophin mRNA rescued dystrophin protein synthesis. Moreover, we observed a stimulation of antisense U7 snRNA expression by the murine muscle creatine kinase enhancer. These results demonstrate that alteration of dystrophin pre-mRNA splicing could correct dystrophin gene mutations by expression of specific U7 snRNA constructs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Induced defenses play a key role in plant resistance against leaf feeders. However, very little is known about the signals that are involved in defending plants against root feeders and how they are influenced by abiotic factors. We investigated these aspects for the interaction between rice (Oryza sativa) and two root-feeding insects: the generalist cucumber beetle (Diabrotica balteata) and the more specialized rice water weevil (Lissorhoptrus oryzophilus). Rice plants responded to root attack by increasing the production of jasmonic acid (JA) and abscisic acid, whereas in contrast to in herbivore-attacked leaves, salicylic acid and ethylene levels remained unchanged. The JA response was decoupled from flooding and remained constant over different soil moisture levels. Exogenous application of methyl JA to the roots markedly decreased the performance of both root herbivores, whereas abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid did not have any effect. JA-deficient antisense 13-lipoxygenase (asLOX) and mutant allene oxide cyclase hebiba plants lost more root biomass under attack from both root herbivores. Surprisingly, herbivore weight gain was decreased markedly in asLOX but not hebiba mutant plants, despite the higher root biomass removal. This effect was correlated with a herbivore-induced reduction of sucrose pools in asLOX roots. Taken together, our experiments show that jasmonates are induced signals that protect rice roots from herbivores under varying abiotic conditions and that boosting jasmonate responses can strongly enhance rice resistance against root pests. Furthermore, we show that a rice 13-lipoxygenase regulates root primary metabolites and specifically improves root herbivore growth.