971 resultados para visuo-spatial binding
Resumo:
People with sequence-space synesthesia (SSS) report stable visuo-spatial forms corresponding to numbers, days, and months (amongst others). This type of synesthesia has intrigued scientists for over 130 years but the lack of an agreed upon tool for assessing it has held back research on this phenomenon. The present study builds on previous tests by measuring the consistency of spatial locations that is known to discriminate controls from synesthetes. We document, for the first time, the sensitivity and specificity of such a test and suggest a diagnostic cut-off point for discriminating between the groups based on the area bounded by different placement attempts with the same item.
Resumo:
Increasing time-on-task leads to fatigue and, as shown by previous research, differentially affects the deployment of visual attention towards the left and the right visual space. In healthy participants, an increasing rightward bias is commonly observed with increasing time-on-task. Yet, it is unclear whether specific mechanisms involved in the spatial deployment of visual attention are differentially affected by increasing time-on-task. The aim of the present study was to investigate whether prolonged time-on-task would affect a specific mechanism of visuo-spatial attentional deployment, namely attentional disengagement, in an asymmetrical fashion. For this purpose, we administered to healthy participants a prolonged gap/overlap saccadic paradigm, with left- and right-sided target stimuli. This oculomotor paradigm allowed to quantify disengagement costs according to the direction of the subsequent attentional shifts, and to evaluate the temporal development of disengagement costs with increasing time-on-task. Our results show that, with increasing time-on-task, participants demonstrated significantly lower disengagement costs for rightward compared to leftward saccades. These effects were specific, since concurring side differences of saccadic latencies were found for overlap trials (requiring attentional disengagement), but not for gap trials (requiring no or less attentional disengagement). Moreover, the results were paralleled by a non-lateralised decrease in saccadic peak velocity with increasing time-on-task, a common finding indicating an increasing level of fatigue. Our findings support the idea that non-spatial attentional aspects, such as fatigue due to increasing time-on-task, can have a substantial influence on the spatial deployment of visual attention, in particular on its disengagement, depending on the direction of the subsequent attentional shift.
Resumo:
Little is known about how children learn to associate numbers with their corresponding magnitude and about individual characteristics contributing to performance differences on the numerical magnitude tasks within a relatively homogenous sample of 6-year-olds. The present study investigated the relationships between components of executive function and two different numerical magnitude skills in a sample of 162 kindergartners. The Symbolic Number Line was predicted by verbal updating and switching, whereas the Symbolic Magnitude Comparison was predicted by inhibition. Both symbolic tasks were predicted by visuo-spatial updating. Current findings suggest that visuo-spatial updating underlies young children’s retrieval and processing of numbers’ magnitude.
Resumo:
Attention difficulties and poor balance are both common sequel following a brain injury. This study aimed to determine whether brain injured adults had greater difficulty than controls in performing a basic balance task while concurrently completing several different cognitive tasks varying in visuo-spatial attentional load and complexity. Twenty brain injured adults and 20 age-, sex- and education level-matched controls performed a balance-only task (step stance held for 30s), five cognitive-only tasks (simple and complex non-spatial, visuo-spatial, and a control articulation task), and both together (dual tasks). Brain injured adults showed a greater centre of pressure (COP) excursion and velocity in all conditions than controls. Brain injured adults also demonstrated greater interference with balance when concurrently performing two cognitive tasks than control subjects. These were the control articulation and the simple non-spatial task. It is likely that distractibility during these simple tasks contributed to an increase in COP motion and interference with postural stability in stance. Performing visuo-spatial tasks concurrently with the balance task did not result in any change in COP motion. Dual task interference in this group is thus unlikely to be due to structural interference. Similarly, as the more complex tasks did not uniformly result in increased interference, a reduction in attentional capacity in the brain injured population is unlikely to be the primary cause of dual task interference in this group. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensori-motor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuospatial body knowledge in infancy. Our technique is to compare infants' responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body pictures at 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial visuo-spatial human body representations appear to be highly schematic, becoming more detailed and specific with development. In the final chapter, we explore these conclusions and discuss how levels of body knowledge may interact in early development.
Resumo:
The occipital lobe is one of the cortical areas most affected by the pathology of variant Creutzfeldt-Jakob disease (vCJD). To understand the visual problems of vCJD patients, neuropathological changes were studied in striate (B17, V1) and extrastriate (B18, V2) regions of the occipital cortex in eleven cases of vCJD. No differences in the density of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of the protease resistant form of prion protein (PrPsc) were greater in B18. The density of PrPsc deposits in B17 was positively correlated with their density in B18. The density of the diffuse PrPsc deposits in B17 was negatively correlated with the density of the surviving neurons in B18. In B17 and B18, the vacuoles either exhibited density peaks in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse PrPsc deposits were most frequent in laminae II/III and florid PrPsc deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI compared with B17. Hence, both striate and extrastriate areas of the occipital cortex are affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 may be associated with the development of diffuse PrPsc deposits in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD. Pathological changes in striate and extrastriate regions of the occipital cortex may contribute to several of the visual problems identified in patients with vCJD including oculomotor and visuo-spatial function.
Resumo:
Parkinson’s disease (PD) is a common disorder of middle-aged and elderly people in which degeneration of the extrapyramidal motor system causes significant movement problems. In some patients, however, there are additional disturbances in sensory systems including loss of the sense of smell and auditory and/or visual problems. This article is a general overview of the visual problems likely to be encountered in PD. Changes in vision in PD may result from alterations in visual acuity, contrast sensitivity, colour discrimination, pupil reactivity, eye movements, motion perception, visual field sensitivity and visual processing speeds. Slower visual processing speeds can also lead to a decline in visual perception especially for rapidly changing visual stimuli. In addition, there may be disturbances of visuo-spatial orientation, facial recognition problems, and chronic visual hallucinations. Some of the treatments used in PD may also have adverse ocular reactions. The pattern electroretinogram (PERG) is useful in evaluating retinal dopamine mechanisms and in monitoring dopamine therapies in PD. If visual problems are present, they can have an important effect on the quality of life of the patient, which can be improved by accurate diagnosis and where possible, correction of such defects.
Resumo:
The occipital lobe is one of the cortical areas most affected by the pathology of variant Creutzfeldt-Jakob disease (vCJD). To understand the visual problems of vCJD patients, neuropathological changes were studied in striate (B17, V1) and extrastriate (B18, V2) regions of the occipital cortex in eleven cases of vCJD. No differences in the density of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of the protease resistant form of prion protein (PrPsc) were greater in B18. The density of PrPsc deposits in B17 was positively correlated with their density in B18. The density of the diffuse PrPsc deposits in B17 was negatively correlated with the density of the surviving neurons in B18. In B17 and B18, the vacuoles either exhibited density peaks in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse PrPsc deposits were most frequent in laminae II/III and florid PrPsc deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI compared with B17. Hence, both striate and extrastriate areas of the occipital cortex are affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 may be associated with the development of diffuse PrPsc deposits in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD. Pathological changes in striate and extrastriate regions of the occipital cortex may contribute to several of the visual problems identified in patients with vCJD including oculomotor and visuo-spatial function. © 2012 Nova Science Publishers, Inc. All rights reserved.
Resumo:
This review describes the oculo-visual problems likely to be encountered in Parkinson's disease (PD) with special reference to three questions: (1) are there visual symptoms characteristic of the prodromal phase of PD, (2) is PD dementia associated with specific visual changes, and (3) can visual symptoms help in the differential diagnosis of the parkinsonian syndromes, viz. PD, progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and corticobasal degeneration (CBD)? Oculo-visual dysfunction in PD can involve visual acuity, dynamic contrast sensitivity, colour discrimination, pupil reactivity, eye movement, motion perception, and visual processing speeds. In addition, disturbance of visuo-spatial orientation, facial recognition problems, and chronic visual hallucinations may be present. Prodromal features of PD may include autonomic system dysfunction potentially affecting pupil reactivity, abnormal colour vision, abnormal stereopsis associated with postural instability, defects in smooth pursuit eye movements, and deficits in visuo-motor adaptation, especially when accompanied by idiopathic rapid eye movement (REM) sleep behaviour disorder. PD dementia is associated with the exacerbation of many oculo-visual problems but those involving eye movements, visuo-spatial function, and visual hallucinations are most characteristic. Useful diagnostic features in differentiating the parkinsonian symptoms are the presence of visual hallucinations, visuo-spatial problems, and variation in saccadic eye movement dysfunction.
Resumo:
Being able to judge another person's visuo-spatial perspective is an essential social skill, hence we investigated the generalizability of the involved mechanisms across cultures and genders. Developmental, cross-species, and our own previous research suggest that two different forms of perspective taking can be distinguished, which are subserved by two distinct mechanisms. The simpler form relies on inferring another's line-of-sight, whereas the more complex form depends on embodied transformation into the other's orientation in form of a simulated body rotation. Our current results suggest that, in principle, the same basic mechanisms are employed by males and females in both, East-Asian (EA; Chinese) and Western culture. However, we also confirmed the hypothesis that Westerners show an egocentric bias, whereas EAs reveal an other-oriented bias. Furthermore, Westerners were slower overall than EAs and showed stronger gender differences in speed and depth of embodied processing. Our findings substantiate differences and communalities in social cognition mechanisms across genders and two cultures and suggest that cultural evolution or transmission should take gender as a modulating variable into account.
Resumo:
The early stages of dieting to lose weight have been associated with neuro-psychological impairments. Previous work has not elucidated whether these impairments are a function solely of unsupported or supported dieting. Raised cortico-steroid levels have been implicated as a possible causal mechanism. Healthy, overweight, pre-menopausal women were randomised to one of three conditions in which they dieted either as part of a commercially available weight loss group, dieted without any group support or acted as non-dieting controls for 8 weeks. Testing occurred at baseline and at 1, 4 and 8 weeks post baseline. During each session, participants completed measures of simple reaction time, motor speed, vigilance, immediate verbal recall, visuo-spatial processing and (at Week 1 only) executive function. Cortisol levels were gathered at the beginning and 30 min into each test session, via saliva samples. Also, food intake was self-recorded prior to each session and fasting body weight and percentage body fat were measured at each session. Participants in the unsupported diet condition displayed poorer vigilance performance (p=0.001) and impaired executive planning function (p=0.013) (along with a marginally significant trend for poorer visual recall (p=0.089)) after 1 week of dieting. No such impairments were observed in the other two groups. In addition, the unsupported dieters experienced a significant rise in salivary cortisol levels after 1 week of dieting (p<0.001). Both dieting groups lost roughly the same amount of body mass (p=0.011) over the course of the 8 weeks of dieting, although only the unsupported dieters experienced a significant drop in percentage body fat over the course of dieting (p=0.016). The precise causal nature of the relationship between stress, cortisol, unsupported dieting and cognitive function is, however, uncertain and should be the focus of further research. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Many studies have assessed the neural underpinnings of creativity, failing to find a clear anatomical localization. We aimed to provide evidence for a multi-componential neural system for creativity. We applied a general activation likelihood estimation (ALE) meta-analysis to 45 fMRI studies. Three individual ALE analyses were performed to assess creativity in different cognitive domains (Musical, Verbal, and Visuo-spatial). The general ALE revealed that creativity relies on clusters of activations in the bilateral occipital, parietal, frontal, and temporal lobes. The individual ALE revealed different maximal activation in different domains. Musical creativity yields activations in the bilateral medial frontal gyrus, in the left cingulate gyrus, middle frontal gyrus, and inferior parietal lobule and in the right postcentral and fusiform gyri. Verbal creativity yields activations mainly located in the left hemisphere, in the prefrontal cortex, middle and superior temporal gyri, inferior parietal lobule, postcentral and supramarginal gyri, middle occipital gyrus, and insula. The right inferior frontal gyrus and the lingual gyrus were also activated. Visuo-spatial creativity activates the right middle and inferior frontal gyri, the bilateral thalamus and the left precentral gyrus. This evidence suggests that creativity relies on multi-componential neural networks and that different creativity domains depend on different brain regions.
Resumo:
There is still a matter of debate around the nature of personal neglect. Is it an attention disorder or a body representation disorder? Here we investigate the presence of body representation deficits (i.e., the visuo-spatial body map) in right and left brain-damaged patients and in particular in those affected by personal neglect. 23 unilateral brain-damaged patients (5 left-brain-damaged and 18 right-brain-damaged patients) and 15 healthy controls took part in the study. The visuo-spatial body map was assessed by means of the “Frontal body-evocation subtest (FBE),” in which participants have to put tiles representing body parts on a small wooden board where only the head is depicted as a reference point. In order to compare performance on the FBE with performance on an inanimate object that had well-defined right and left sides, participants also performed the “Car test.” Group statistical analysis shows that the performance of patients with personal neglect is significantly worse than that of the controls and patients without personal neglect in the FBE but not in the Car test. Single case analyses of the five patients with pure personal neglect confirm the results of group analysis. Our data supports the hypothesis that personal neglect is a pervasive body representation disorder.
Resumo:
Incontinentia Pigmenti (IP, OMIM#308300) is a rare X-linked genomic disorder (about 1,400 cases) that affects the neuroectodermal tissue and Central Nervous System (CNS). The objective of this study was to describe the cognitive-behavioural profile in children in order to plan a clinical intervention to improve their quality of life. A total of 14 girls (age range: from 1 year and 2 months to 12 years and 10 months) with IP and the IKBKG/NEMO gene deletion were submitted to a cognitive assessment including intelligence scales, language and visuo-spatial competence tests, learning ability tests, and a behavioural assessment. Five girls had severe to mild intellectual deficiencies and the remaining nine had a normal neurodevelopment. Four girls were of school age and two of these showed no intellectual disability, but had specific disabilities in calculation and arithmetic reasoning. This is the first description of the cognitive-behavioural profile in relation to developmental age. We stress the importance of an early assessment of learning abilities in individuals with IP without intellectual deficiencies to prevent the onset of any such deficit.
Resumo:
Introduction: Hallucinations that involve shifts in the subjectively experienced location of the self, have been termed “out-of-body experiences” (OBEs). Early psychiatric accounts cast OBEs as a specific instance of depersonalisation and derealisation disorder (DPD-DR). However, during feelings of alienation and lack of body realism in DPD-DR the self is experienced within the physical body. Deliberate forms of “disembodiment” enable humans to imagine another’s visuo-spatial perspective taking (VPT), thus, if a strong relationship between deliberate and spontaneous forms of disembodiment could be revealed, then uncontrolled OBEs could be “the other side of the coin” of a uniquely human capacity. Methods: We present a narrative review of behavioural and neuroimaging work emphasising methodological and theoretical aspects of OBE and VPT research and a potential relationship. Results: Results regarding a direct behavioural relationship between VPT and OBE are mixed and we discuss reasons by pointing out the importance of using realistic tasks and recruiting genuine OBEers instead of general DPD-DR patients. Furthermore, we review neuroimaging evidence showing overlapping neural substrates between VPT and OBE, providing a strong argument for a relationship between the two processes. Conclusions: We conclude that OBE should be regarded as a necessary implication of VPT ability in humans, or even as a necessary and potentially sufficient condition for the evolution of VPT.