991 resultados para transformed data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

I simulated somatic growth and accompanying otolith growth using an individual-based bioenergetics model in order to examine the performance of several back-calculation methods. Four shapes of otolith radius-total length relations (OR-TL) were simulated. Ten different back-calculation equations, two different regression models of radius length, and two schemes of annulus selection were examined for a total of 20 different methods to estimate size at age from simulated data sets of length and annulus measurements. The accuracy of each of the twenty methods was evaluated by comparing the back-calculated length-at-age and the true length-at-age. The best back-calculation technique was directly related to how well the OR-TL model fitted. When the OR-TL was sigmoid shaped and all annuli were used, employing a least squares linear regression coupled with a log-transformed Lee back-calculation equation (y-intercept corrected) resulted in the least error; when only the last annulus was used, employing a direct proportionality back-calculation equation resulted in the least error. When the OR-TL was linear, employing a functional regression coupled with the Lee back-calculation equation resulted in the least error when all annuli were used, and also when only the last annulus was used. If the OR-TL was exponentially shaped, direct substitution into the fitted quadratic equation resulted in the least error when all annuli were used, and when only the last annulus was used. Finally, an asymptotically shaped OR-TL was best modeled by the individually corrected Weibull cumulative distribution function when all annuli were used, and when only the last annulus was used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The feasibility of vibration data to identify damage in a population of cylindrical shells is assessed. Vibration data from a population of cylinders were measured and modal analysis was employed to obtain natural frequencies and mode shapes. The mode shapes were transformed into the Coordinate Modal Assurance Criterion (COMAC). The natural frequencies and the COMAC before and after damage for a population of structures show that modal analysis is a viable route to damage identification in a population of nominally identical cylinders. Modal energies, which are defined as the integrals of the real and imaginary components of the frequency response functions over various frequency ranges, were extracted and transformed into the Coordinate Modal Energy Assurance Criterion (COMEAC). The COMEAC before and after damage show that using modal energies is a viable approach to damage identification in a population of cylinders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thymidylate synthase (TS), an essential enzyme in DNA synthesis and repair, plays a key role in the events of cell cycle regulation and tumor formation. Here, an investigation was presented about subcellular location and biological function of viral TS from lymphocystis disease virus from China (LCDV-C) in fish cells. Fluorescence microscopy revealed that LCDV-C TS was predominantly localized in the cytoplasm in fish cells. Cell cycle analysis demonstrated that LCDV-C TS promoted cell cycle progression into S and G2/M phase in the constitutive expressed cells. As a result, the cells have a faster growth rate compared with the control cells as revealed by cell growth curves. For foci assay, the TS-expressed cells gave rise to foci 4-5 weeks after incubation. Microscopic examination of the TS-induced foci revealed multilayered growth and crisscross morphology characteristic of transformed cells. Moreover, LCDV-C TS predisposed the transfected cells to acquire an anchorage-independent phenotype and could grow in 0.3% soft agar. So the data reveal LCDV-C TS is sufficient to induce a transformed phenotype in fish cells in vitro and exhibits its potential ability in cell transformation. To our knowledge, it is the first report on viral TS sequences associated with transforming activity. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C. Shang and Q. Shen. Aiding classification of gene expression data with feature selection: a comparative study. Computational Intelligence Research, 1(1):68-76.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Adenosine-induced transient flow arrest has been used to facilitate clip ligation of intracranial aneurysms. However, the starting dose that is most likely to produce an adequate duration of profound hypotension remains unclear. We reviewed our experience to determine the dose-response relationship and apparent perioperative safety profile of adenosine in intracranial aneurysm patients. METHODS: This case series describes 24 aneurysm clip ligation procedures performed under an anesthetic consisting of remifentanil, low-dose volatile anesthetic, and propofol in which adenosine was used. The report focuses on the doses administered; duration of systolic blood pressure <60 mm Hg (SBP(<60 mm Hg)); and any cardiovascular, neurologic, or pulmonary complications observed in the perioperative period. RESULTS: A median dose of 0.34 mg/kg ideal body weight (range: 0.29-0.44 mg/kg) resulted in a SBP(<60 mm Hg) for a median of 57 seconds (range: 26-105 seconds). There was a linear relationship between the log-transformed dose of adenosine and the duration of a SBP(<60 mm Hg) (R(2) = 0.38). Two patients developed transient, hemodynamically stable atrial fibrillation, 2 had postoperative troponin levels >0.03 ng/mL without any evidence of cardiac dysfunction, and 3 had postoperative neurologic changes. CONCLUSIONS: For intracranial aneurysms in which temporary occlusion is impractical or difficult, adenosine is capable of providing brief periods of profound systemic hypotension with low perioperative morbidity. On the basis of these data, a dose of 0.3 to 0.4 mg/kg ideal body weight may be the recommended starting dose to achieve approximately 45 seconds of profound systemic hypotension during a remifentanil/low-dose volatile anesthetic with propofol induced burst suppression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research aims to use the multivariate geochemical dataset, generated by the Tellus project, to investigate the appropriate use of transformation methods to maintain the integrity of geochemical data and inherent constrained behaviour in multivariate relationships. The widely used normal score transform is compared with the use of a stepwise conditional transform technique. The Tellus Project, managed by GSNI and funded by the Department of Enterprise Trade and Development and the EU’s Building Sustainable Prosperity Fund, involves the most comprehensive geological mapping project ever undertaken in Northern Ireland. Previous study has demonstrated spatial variability in the Tellus data but geostatistical analysis and interpretation of the datasets requires use of an appropriate methodology that reproduces the inherently complex multivariate relations. Previous investigation of the Tellus geochemical data has included use of Gaussian-based techniques. However, earth science variables are rarely Gaussian, hence transformation of data is integral to the approach. The multivariate geochemical dataset generated by the Tellus project provides an opportunity to investigate the appropriate use of transformation methods, as required for Gaussian-based geostatistical analysis. In particular, the stepwise conditional transform is investigated and developed for the geochemical datasets obtained as part of the Tellus project. The transform is applied to four variables in a bivariate nested fashion due to the limited availability of data. Simulation of these transformed variables is then carried out, along with a corresponding back transformation to original units. Results show that the stepwise transform is successful in reproducing both univariate statistics and the complex bivariate relations exhibited by the data. Greater fidelity to multivariate relationships will improve uncertainty models, which are required for consequent geological, environmental and economic inferences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that regression analyses involving compositional data need special attention because the data are not of full rank. For a regression analysis where both the dependent and independent variable are components we propose a transformation of the components emphasizing their role as dependent and independent variables. A simple linear regression can be performed on the transformed components. The regression line can be depicted in a ternary diagram facilitating the interpretation of the analysis in terms of components. An exemple with time-budgets illustrates the method and the graphical features

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Planners in public and private institutions would like coherent forecasts of the components of age-specic mortality, such as causes of death. This has been di cult to achieve because the relative values of the forecast components often fail to behave in a way that is coherent with historical experience. In addition, when the group forecasts are combined the result is often incompatible with an all-groups forecast. It has been shown that cause-specic mortality forecasts are pessimistic when compared with all-cause forecasts (Wilmoth, 1995). This paper abandons the conventional approach of using log mortality rates and forecasts the density of deaths in the life table. Since these values obey a unit sum constraint for both conventional single-decrement life tables (only one absorbing state) and multiple-decrement tables (more than one absorbing state), they are intrinsically relative rather than absolute values across decrements as well as ages. Using the methods of Compositional Data Analysis pioneered by Aitchison (1986), death densities are transformed into the real space so that the full range of multivariate statistics can be applied, then back-transformed to positive values so that the unit sum constraint is honoured. The structure of the best-known, single-decrement mortality-rate forecasting model, devised by Lee and Carter (1992), is expressed in compositional form and the results from the two models are compared. The compositional model is extended to a multiple-decrement form and used to forecast mortality by cause of death for Japan

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the decade since OceanObs `99, great advances have been made in the field of ocean data dissemination. The use of Internet technologies has transformed the landscape: users can now find, evaluate and access data rapidly and securely using only a web browser. This paper describes the current state of the art in dissemination methods for ocean data, focussing particularly on ocean observations from in situ and remote sensing platforms. We discuss current efforts being made to improve the consistency of delivered data and to increase the potential for automated integration of diverse datasets. An important recent development is the adoption of open standards from the Geographic Information Systems community; we discuss the current impact of these new technologies and their future potential. We conclude that new approaches will indeed be necessary to exchange data more effectively and forge links between communities, but these approaches must be evaluated critically through practical tests, and existing ocean data exchange technologies must be used to their best advantage. Investment in key technology components, cross-community pilot projects and the enhancement of end-user software tools will be required in order to assess and demonstrate the value of any new technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leave-one-out (LOO) criteria is developed to construct parsimonious radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines the center vector and diagonal covariance matrix of one RBF node by minimizing the LOO statistics. For regression applications, the LOO criterion is chosen to be the LOO mean square error, while the LOO misclassification rate is adopted in two-class classification applications. By adopting the Parzen window estimate as the desired response, the unsupervised density estimation problem is transformed into a constrained regression problem. This PSO aided OFR algorithm for tunable-node RBF networks is capable of constructing very parsimonious RBF models that generalize well, and our analysis and experimental results demonstrate that the algorithm is computationally even simpler than the efficient regularization assisted orthogonal least square algorithm based on LOO criteria for selecting fixed-node RBF models. Another significant advantage of the proposed learning procedure is that it does not have learning hyperparameters that have to be tuned using costly cross validation. The effectiveness of the proposed PSO aided OFR construction procedure is illustrated using several examples taken from regression and classification, as well as density estimation applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variational data assimilation systems for numerical weather prediction rely on a transformation of model variables to a set of control variables that are assumed to be uncorrelated. Most implementations of this transformation are based on the assumption that the balanced part of the flow can be represented by the vorticity. However, this assumption is likely to break down in dynamical regimes characterized by low Burger number. It has recently been proposed that a variable transformation based on potential vorticity should lead to control variables that are uncorrelated over a wider range of regimes. In this paper we test the assumption that a transform based on vorticity and one based on potential vorticity produce an uncorrelated set of control variables. Using a shallow-water model we calculate the correlations between the transformed variables in the different methods. We show that the control variables resulting from a vorticity-based transformation may retain large correlations in some dynamical regimes, whereas a potential vorticity based transformation successfully produces a set of uncorrelated control variables. Calculations of spatial correlations show that the benefit of the potential vorticity transformation is linked to its ability to capture more accurately the balanced component of the flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methods for producing nonuniform transformations, or regradings, of discrete data are discussed. The transformations are useful in image processing, principally for enhancement and normalization of scenes. Regradings which “equidistribute” the histogram of the data, that is, which transform it into a constant function, are determined. Techniques for smoothing the regrading, dependent upon a continuously variable parameter, are presented. Generalized methods for constructing regradings such that the histogram of the data is transformed into any prescribed function are also discussed. Numerical algorithms for implementing the procedures and applications to specific examples are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The estimation of data transformation is very useful to yield response variables satisfying closely a normal linear model, Generalized linear models enable the fitting of models to a wide range of data types. These models are based on exponential dispersion models. We propose a new class of transformed generalized linear models to extend the Box and Cox models and the generalized linear models. We use the generalized linear model framework to fit these models and discuss maximum likelihood estimation and inference. We give a simple formula to estimate the parameter that index the transformation of the response variable for a subclass of models. We also give a simple formula to estimate the rth moment of the original dependent variable. We explore the possibility of using these models to time series data to extend the generalized autoregressive moving average models discussed by Benjamin er al. [Generalized autoregressive moving average models. J. Amer. Statist. Assoc. 98, 214-223]. The usefulness of these models is illustrated in a Simulation study and in applications to three real data sets. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the first time, we introduce a class of transformed symmetric models to extend the Box and Cox models to more general symmetric models. The new class of models includes all symmetric continuous distributions with a possible non-linear structure for the mean and enables the fitting of a wide range of models to several data types. The proposed methods offer more flexible alternatives to Box-Cox or other existing procedures. We derive a very simple iterative process for fitting these models by maximum likelihood, whereas a direct unconditional maximization would be more difficult. We give simple formulae to estimate the parameter that indexes the transformation of the response variable and the moments of the original dependent variable which generalize previous published results. We discuss inference on the model parameters. The usefulness of the new class of models is illustrated in one application to a real dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose methods for smooth hazard estimation of a time variable where that variable is interval censored. These methods allow one to model the transformed hazard in terms of either smooth (smoothing splines) or linear functions of time and other relevant time varying predictor variables. We illustrate the use of this method on a dataset of hemophiliacs where the outcome, time to seroconversion for HIV, is interval censored and left-truncated.