998 resultados para trä
Resumo:
Ladam (Nicaise). Epistel van de stadt van Rodes (1522)
Resumo:
Charles Quint, roi d'Espagne et empereur d'Allemagne, d'abord archiduc d'Autriche. Le Voyage et Expedition de Charles le quint en Africque contre la ville de Argiere (1542)
Resumo:
Bossuet (Jacques-Bénigne). Conference avec M. Claude (1682)
Resumo:
Objetivou-se avaliar a efetividade dos serviços de saúde no diagnóstico da tuberculose em Foz do Iguaçu-PR. Realizou-se uma pesquisa avaliativa, com desenho epidemiológico transversal. Foram entrevistados 101 doentes de tuberculose em 2009, utilizando um instrumento baseado no Primary Care Assessment Tool . A análise ocorreu a partir de proporções e respectivos intervalos de confiança (95%) e mediana. O Pronto Atendimento (37%) e a Atenção Básica à Saúde (ABS) (36%) foram os locais mais buscados. O acesso à consulta no mesmo dia alcançou 70%, mas a suspeição da doença foi menor que 47%; a baciloscopia realizada em 50% dos doentes. Concluiu-se que apesar desses serviços atenderem rapidamente, isso não determinou alcance do diagnóstico, levando o doente a procurar os serviços especializados, mais efetivos na descoberta dos casos. A busca pela ABS gerou maior tempo e maior número de retornos para o diagnóstico da tuberculose na tríplice fronteira.
Resumo:
Today, many of Iowa’s counties are experiencing an increase in rural development. Two specific types of development were focused on for this research: rural residential subdivisions and livestock production operations. Rural residential developments are primarily year round single-family homes, though some are vacation homes. Livestock production in Iowa includes hog, beef, and poultry facilities. These two types of rural development, while obviously very different in nature and incompatible with each other, share one important characteristic: They each generate substantial amounts of new traffic for Iowa’s extensive secondary road system. This research brings together economic, spatial, and legal analysis methods to address the impacts of rural development on the secondary road system and provide county engineers, county supervisors, and state legislators with guidance in addressing the challenges associated with this development.
Resumo:
The year 1949 saw the Iowa General Assembly’s establishment of the Iowa Secondary Road Research Fund, which led to the creation of a supervisory board within what was then the Iowa State Highway Commission to oversee the expenditure of that fund. The purpose of the fund and the board was to research road construction topics likely to be beneficial to the working of Iowa’s secondary, or local, road system. The supervisory board—called the Iowa Highway Research Board (the “Board”)—was organized by the highway commission in December 1949 and first met in May 1950. The creation of the fund and of the Iowa Highway Research Board marked the first organized effort in the United States to investigate local road construction problems and placed Iowa in the forefront of this field of engineering research. That Iowa should be a leader in such an effort is not surprising, given the early and sustained emphasis of the Iowa State Highway Commission on both research and the dissemination of information to county authorities. Now, 50 years later, a retrospective is in order. To that end, the Iowa Highway Research Board commissioned the preparation of a commemorative history. This work is the result of that project. Throughout its existence, the Board has funded nearly 450 projects, several of national significance. Many new construction and maintenance techniques have been developed, some of which have evolved into standard practices in highway construction. Innovative new materials and equipment have been tested. Still other projects have considered a wide variety of subjects related to the efficient operation of the highway system. Highway safety, conservation, and law have all come under research scrutiny. While it will not be possible, given the short space available, to consider all the projects financed by the Iowa Highway Research Board, it is well worthwhile to examine the Board’s principal projects and its resulting contributions to the field of highway research.
Resumo:
A pilot study was conducted on the premature failures of neoprene strip seals in expansion joints in Iowa bridges. In a relatively large number of bridges, strip seals have pulled out of the steel extrusions or otherwise failed well before the expected life span of the seal. The most serious consequence of a strip-seal failure is damage to the bridge substructure due to salt, water, and debris interacting with the substructure. A literature review was performed. Manufacturers’ specifications and recommendations, practices in the states bordering Iowa, and Iowa DOT design and installation guidelines were reviewed. Discussions were held with bridge contractors and the installation of a strip seal system was observed. Iowa DOT bridge databases were analyzed. A national survey was conducted on the use and performance of strip seals. With guidance from the Iowa DOT, twelve in-service bridges with strip-seal expansion joints were selected for detailed investigation. Effective bridge temperatures and corresponding expansion-joint openings were measured, DOT inspection reports were reviewed, and likely cause(s) of premature failures of strip seals were proposed. All of the seals used in the twelve bridges that had the most serious failures were in concrete girder bridges. Experimental results show that for a majority of these serious failures, the joint opening at 0° F predicted by the Iowa DOT design equations, the joint opening at 0° F extrapolated from the experimental data, or both, are larger than the movement rating of the strip seal specified on the bridge plans. Other likely causes of premature failures of seals in the twelve bridges include debris and ice in the seal cavity, a large skew and the corresponding decrease in the movement rating of the seal, improper installation, and improper setting of the initial gap.
Resumo:
The project described herein has led to a convenient, computer-based expert system for identifying and evaluating potentially effective erosion- and sedimentation-control measures for use in roadway construction throughout Iowa and elsewhere in the Midwest. The expert system is intended to be an accessible and efficient practical resource to aid state, county, and municipal engineers in the selection of the best management practices for preventing unwanted erosion and sedimentation at roadway construction sites, during and after construction.
Resumo:
Roadside cross-drainage culverts have been found to impact vehicle accident injury levels. Designers have commonly used three safety treatments to protect errant drivers from culvert accidents. These treatments have included: culvert extension, guardrail installation and grating. In order to define which safety treatment is the most appropriate, benefit-cost analysis has used accident cost reduction to estimate societal gains earned by using any safety treatment. The purpose of this study was to estimate accident costs for a wide range of roadway and roadside characteristics so that designers can calculate benefit/cost ratios for culvert safety treatment options under any particular scenario. This study began with conducting a parametric study in order to find variables which have significant impact on accident cost changes. The study proceeded with highway scenario modeling which included scenarios with different values for combinations of roadway and roadside variables. These variables were chosen based upon findings from the parametric study and their values were assigned based upon highway classification. This study shows that the use of different culvert safety treatments should be flexible to roadway and roadside characteristics. It also shows that culvert extension and grating were the safety treatments found to produce the lowest accident costs for all highway scenarios modeled. Therefore, it is believed that the expanded adoption of culvert extension and culvert grates can improve overall highway safety.
Resumo:
Currently, no standard mix design procedure is available for CIR-emulsion in Iowa. The CIR-foam mix design process developed during the previous phase is applied for CIR-emulsion mixtures with varying emulsified asphalt contents. Dynamic modulus test, dynamic creep test, static creep test and raveling test were conducted to evaluate the short- and long-term performance of CIR-emulsion mixtures at various testing temperatures and loading conditions. A potential benefit of this research is a better understanding of CIR-emulsion material properties in comparison with those of CIR-foam material that would allow for the selection of the most appropriate CIR technology and the type and amount of the optimum stabilization material. Dynamic modulus, flow number and flow time of CIR-emulsion mixtures using CSS-h were generally higher than those of HFMS-2p. Flow number and flow time of CIR-emulsion using RAP materials from Story County was higher than those from Clayton County. Flow number and flow time of CIR-emulsion with 0.5% emulsified asphalt was higher than CIR-emulsion with 1.0% or 1.5%. Raveling loss of CIR-emulsion with 1.5% emulsified was significantly less than those with 0.5% and 1.0%. Test results in terms of dynamic modulus, flow number, flow time and raveling loss of CIR-foam mixtures are generally better than those of CIR-emulsion mixtures. Given the limited RAP sources used for this study, it is recommended that the CIR-emulsion mix design procedure should be validated against several RAP sources and emulsion types.
Resumo:
Longitudinal joint quality control/assurance is essential to the successful performance of asphalt pavements and it has received considerable amount of attention in recent years. The purpose of the study is to evaluate the level of compaction at the longitudinal joint and determine the effect of segregation on the longitudinal joint performance. Five paving projects with the use of traditional butt joint, infrared joint heater, edge restraint by milling and modified butt joint with the hot pinch longitudinal joint construction techniques were selected in this study. For each project, field density and permeability tests were made and cores from the pavement were obtained for in-lab permeability, air void and indirect tensile strength. Asphalt content and gradations were also obtained to determine the joint segregation. In general, this study finds that the minimum required joint density should be around 90.0% of the theoretical maximum density based on the AASHTO T166 method. The restrained-edge by milling and butt joint with the infrared heat treatment construction methods both create the joint density higher than this 90.0% limit. Traditional butt joint exhibits lower density and higher permeability than the criterion. In addition, all of the projects appear to have segregation at the longitudinal joint except for the edge-restraint by milling method.
Resumo:
The primary objective of this toolbox is to summarize various known traffic-calming treatments and their effectiveness. This toolbox focuses on roadway-based treatments for speed management, particularly for rural communities with transition zones. Education, enforcement, and policy strategies should also be considered, but are not the focus of this toolbox. The research team identified treatments based on their own research, a review of the literature, and discussion with other professionals. This toolbox describes each treatment and summarizes placement, advantages, disadvantages, effectiveness, appropriateness, and cost for each treatment. The categories of treatments covered in this toolbox are as follows: horizontal physical displacement, vertical physical displacement, narrowing, surroundings, pavement markings, traffic control signs, and other strategies. Separate 3- to 4-page Tech Briefs for various aspects of this toolbox are attached to this record: Center Islands with Raised Curbing for Rural Traffic Calming, Colored Entrance Treatments for Rural Traffic Calming, Dynamic Speed Feedback Signs for Rural Traffic Calming, Transverse Speed Bars for Rural Traffic Calming. This toolbox and the tech briefs are related to the report Evaluation of Low Cost Traffic Calming for Rural Communities – Phase II, which is also included in this record or can be found at http://publications.iowa.gov/id/eprint/14769
Resumo:
The 2011 Missouri River flooding caused significant damage to many geo-infrastructure systems including levees, bridge abutments/foundations, paved and unpaved roadways, culverts, and embankment slopes in western Iowa. The flooding resulted in closures of several interchanges along Interstate 29 and of more than 100 miles of secondary roads in western Iowa, causing severe inconvenience to residents and losses to local businesses. The main goals of this research project were to assist county and city engineers by deploying and using advanced technologies to rapidly assess the damage to geo-infrastructure and develop effective repair and mitigation strategies and solutions for use during future flood events in Iowa. The research team visited selected sites in western Iowa to conduct field reconnaissance, in situ testing on bridge abutment backfills that were affected by floods, flooded and non-flooded secondary roadways, and culverts. In situ testing was conducted shortly after the flood waters receded, and several months after flooding to evaluate recovery and performance. Tests included falling weight deflectometer, dynamic cone penetrometer, three-dimensional (3D) laser scanning, ground penetrating radar, and hand auger soil sampling. Field results indicated significant differences in roadway support characteristics between flooded and non-flooded areas. Support characteristics in some flooded areas recovered over time, while others did not. Voids were detected in culvert and bridge abutment backfill materials shortly after flooding and several months after flooding. A catalog of field assessment techniques and 20 potential repair/mitigation solutions are provided in this report. A flow chart relating the damages observed, assessment techniques, and potential repair/mitigation solutions is provided. These options are discussed for paved/unpaved roads, culverts, and bridge abutments, and are applicable for both primary and secondary roadways.
Resumo:
High-performance concrete (HPC) overlays have been used increasingly as an effective and economical method for bridge decks in Iowa and other states. However, due to its high cementitious material content, HPC often displays high shrinkage cracking potential. This study investigated the shrinkage behavior and cracking potential of the HPC overlay mixes commonly used in Iowa. In the study, 11 HPC overlay mixes were studied. These mixes consisted of three types of cements (Type I, I/II, and IP) and various supplementary cementitious materials (Class C fly ash, slag and metakaolin). Limestone with two different gradations was used as coarse aggregates in 10 mixes and quartzite was used in one mix. Chemical shrinkage of pastes, free drying shrinkage, autogenous shrinkage of mortar and concrete, and restrained ring shrinkage of concrete were monitored over time. Mechanical properties (such as elastic modulus and compressive and splitting tensile strength) of these concrete mixes were measured at different ages. Creep coefficients of these concrete mixes were estimated using the RILEM B3 and NCHRP Report 496 models. Cracking potential of the concrete mixes was assessed based on both ASTM C 1581 and simple stress-to-strength ratio methods. The results indicate that among the 11 mixes studied, three mixes (4, 5, and 6) cracked at the age of 15, 11, and 17 days, respectively. Autogenous shrinkage of the HPC mixes ranges from 150 to 250 microstrain and free dying shrinkage of the concrete ranges from 700 to 1,200 microstrain at 56 days. Different concrete materials (cementitious type and admixtures) and mix proportions (cementitious material content) affect concrete shrinkage in different ways. Not all mixes having a high shrinkage value cracked first. The stresses in the concrete are associated primarily with the concrete shrinkage, elastic modulus, tensile strength, and creep. However, a good relationship is found between cementitious material content and total (autogenous and free drying) shrinkage of concrete.
Resumo:
This work is divided into three volumes: Volume I: Strain-Based Damage Detection; Volume II: Acceleration-Based Damage Detection; Volume III: Wireless Bridge Monitoring Hardware. Volume I: In this work, a previously-developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The statistical damage-detection tool, control-chart-based damage-detection methodologies, were further investigated and advanced. For the validation of the damage-detection approaches, strain data were obtained from a sacrificial specimen attached to the previously-utilized US 30 Bridge over the South Skunk River (in Ames, Iowa), which had simulated damage,. To provide for an enhanced ability to detect changes in the behavior of the structural system, various control chart rules were evaluated. False indications and true indications were studied to compare the damage detection ability in regard to each methodology and each control chart rule. An autonomous software program called Bridge Engineering Center Assessment Software (BECAS) was developed to control all aspects of the damage detection processes. BECAS requires no user intervention after initial configuration and training. Volume II: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The objective of this part of the project was to validate/integrate a vibration-based damage-detection algorithm with the strain-based methodology formulated by the Iowa State University Bridge Engineering Center. This report volume (Volume II) presents the use of vibration-based damage-detection approaches as local methods to quantify damage at critical areas in structures. Acceleration data were collected and analyzed to evaluate the relationships between sensors and with changes in environmental conditions. A sacrificial specimen was investigated to verify the damage-detection capabilities and this volume presents a transmissibility concept and damage-detection algorithm that show potential to sense local changes in the dynamic stiffness between points across a joint of a real structure. The validation and integration of the vibration-based and strain-based damage-detection methodologies will add significant value to Iowa’s current and future bridge maintenance, planning, and management Volume III: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. This report volume (Volume III) summarizes the energy harvesting techniques and prototype development for a bridge monitoring system that uses wireless sensors. The wireless sensor nodes are used to collect strain measurements at critical locations on a bridge. The bridge monitoring hardware system consists of a base station and multiple self-powered wireless sensor nodes. The base station is responsible for the synchronization of data sampling on all nodes and data aggregation. Each wireless sensor node include a sensing element, a processing and wireless communication module, and an energy harvesting module. The hardware prototype for a wireless bridge monitoring system was developed and tested on the US 30 Bridge over the South Skunk River in Ames, Iowa. The functions and performance of the developed system, including strain data, energy harvesting capacity, and wireless transmission quality, were studied and are covered in this volume.