976 resultados para self-maps
Resumo:
It is demanding for children with visual impairment to become aware of the world beyond their immediate experience. They need to learn to control spatial experiences as a whole and understand the relationships between objects, surfaces and themselves. Tactile maps can be an excellent source of information for depicting space and environment. By means of tactile maps children can develop their spatial understanding more efficiently than through direct travel experiences supplemented with verbal explanations. Tactile maps can help children when they are learning to understand environmental, spatial, and directional concepts. The ability to read tactile maps is not self-evident; it is a skill, which must be learned. The main research question was: can children who are visually impaired learn to read tactile maps at the preschool age if they receive structural teaching? The purpose of this study was to develop an educational program for preschool children with visual impairment, the aim of which was to teach them to read tactile maps in order to strengthen their orientation skills and to encourage them to explore the world beyond their immediate experience. The study is a multiple case study describing the development of the map program consisting of eight learning tasks. The program was developed with one preschooler who was blind, and subsequently the program was implemented with three other children. Two of the children were blind from birth, one child had lost her vision at the age of two, and one child had low vision. The program was implemented in a normal preschool. Another objective of the pre-map program was to teach the preschooler with visual impairment to understand the concept of a map. The teaching tools were simple, map-like representations called pre-maps. Before a child with visual impairment can read a comprehensive tactile map, it is important to learn to understand map symbols, and how a three-dimensional model changes to a two-dimensional tactile map. All teaching sessions were videotaped; the results are based on the analysis of the videotapes. Two of the children completed the program successfully, and learned to read a tactile map. The two other children felt happy during the sessions, but it was problematic for them to engage fully in the instruction. One of the two eventually completed the program, while the other developed predominantly emerging skills. The results of the children's performances and the positive feedback from the teachers, assistants and the parents proved that this pre-map program is appropriate teaching material for preschool children who are visually impaired. The program does not demand high-level expertise; also parents, preschool teachers, and school assistants can carry out the program.
Resumo:
This cross-sectional study analyzed psychological well-being at school using the Self-Determination theory as a theoretical frame-work. The study explored basic psychological needs fulfillment (BPNS), academic (SRQ-A), prosocial self-regulation (SRQ-P) and motivation, and their relationship with achievement in general, special and selective education (N=786, 444 boys, 345 girls, mean age 12 yrs 8 mths). Motivation starts behavior which becomes guided by self-regulation. The perceived locus of control (PLOC) affects how self-determined this behavior will be; in other words, to what extent it is autonomously regulated. In order learn and thus to be able to accept external goals, a student has to feel emotionally safe and have sufficient ego-flexibility—all of which builds on satisfied psychological needs. In this study those conditions were explored. In addition to traditional methods Self-organizing maps (SOM), was used in order to cluster the students according to their well-being, self-regulation, motivation and achievement scores. The main impacts of this research were: a presentation of the theory based alternative of studying psychological well-being at school and usage of both the variable and person-oriented approach. In this Finnish sample the results showed that the majority of students felt well, but the well-being varied by group. Overall about for 11–15% the basic needs were deprived depending on the educational group. Age and educational group were the most effective factors; gender was important in relation to prosocial identified behavior. Although the person-oriented SOM-approach, was in a large extent confirming what was no-ticed by using comparison of the variables: the SEN groups had lower levels of basic needs fulfillment and less autonomous self-regulation, interesting deviations of that rule appeared. Some of the SEL- and GEN-group members ended up in the more unfavorable SOM-clusters, and not all SEN-group members belonged to the poorest clusters (although not to the best either). This evidence refines the well-being and self-regulation picture, and may re-direct intervention plans, and turn our focus also on students who might otherwise remain unnoticed. On the other hand, these results imply simultaneously that in special education groups the average is not the whole truth. On the basis of theoretical and empirical considerations an intervention model was sug-gested. The aim of the model was to shift amotivation or external motivation in a more intrinsic direction. According to the theoretical and empirical evidence this can be achieved first by studying the self-concept a student has, and then trying to affect both inner and environmental factors—including a consideration of the basic psychological needs. Keywords: academic self-regulation, prosocial self-regulation, basic psychological needs, moti-vation, achievement
Resumo:
This paper addresses a search problem with multiple limited capability search agents in a partially connected dynamical networked environment under different information structures. A self assessment-based decision-making scheme for multiple agents is proposed that uses a modified negotiation scheme with low communication overheads. The scheme has attractive features of fast decision-making and scalability to large number of agents without increasing the complexity of the algorithm. Two models of the self assessment schemes are developed to study the effect of increase in information exchange during decision-making. Some analytical results on the maximum number of self assessment cycles, effect of increasing communication range, completeness of the algorithm, lower bound and upper bound on the search time are also obtained. The performance of the various self assessment schemes in terms of total uncertainty reduction in the search region, using different information structures is studied. It is shown that the communication requirement for self assessment scheme is almost half of the negotiation schemes and its performance is close to the optimal solution. Comparisons with different sequential search schemes are also carried out. Note to Practitioners-In the futuristic military and civilian applications such as search and rescue, surveillance, patrol, oil spill, etc., a swarm of UAVs can be deployed to carry out the mission for information collection. These UAVs have limited sensor and communication ranges. In order to enhance the performance of the mission and to complete the mission quickly, cooperation between UAVs is important. Designing cooperative search strategies for multiple UAVs with these constraints is a difficult task. Apart from this, another requirement in the hostile territory is to minimize communication while making decisions. This adds further complexity to the decision-making algorithms. In this paper, a self-assessment-based decision-making scheme, for multiple UAVs performing a search mission, is proposed. The agents make their decisions based on the information acquired through their sensors and by cooperation with neighbors. The complexity of the decision-making scheme is very low. It can arrive at decisions fast with low communication overheads, while accommodating various information structures used for increasing the fidelity of the uncertainty maps. Theoretical results proving completeness of the algorithm and the lower and upper bounds on the search time are also provided.
Resumo:
This article describes neural network models for adaptive control of arm movement trajectories during visually guided reaching and, more generally, a framework for unsupervised real-time error-based learning. The models clarify how a child, or untrained robot, can learn to reach for objects that it sees. Piaget has provided basic insights with his concept of a circular reaction: As an infant makes internally generated movements of its hand, the eyes automatically follow this motion. A transformation is learned between the visual representation of hand position and the motor representation of hand position. Learning of this transformation eventually enables the child to accurately reach for visually detected targets. Grossberg and Kuperstein have shown how the eye movement system can use visual error signals to correct movement parameters via cerebellar learning. Here it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters. These movements also activate the target position representations that are used to learn the visuo-motor transformation that controls visually guided reaching. The AVITE model presented here is an adaptive neural circuit based on the Vector Integration to Endpoint (VITE) model for arm and speech trajectory generation of Bullock and Grossberg. In the VITE model, a Target Position Command (TPC) represents the location of the desired target. The Present Position Command (PPC) encodes the present hand-arm configuration. The Difference Vector (DV) population continuously.computes the difference between the PPC and the TPC. A speed-controlling GO signal multiplies DV output. The PPC integrates the (DV)·(GO) product and generates an outflow command to the arm. Integration at the PPC continues at a rate dependent on GO signal size until the DV reaches zero, at which time the PPC equals the TPC. The AVITE model explains how self-consistent TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE parameters is regulated by activation of a self-regulating Endogenous Random Generator (ERG) of training vectors. Each vector is integrated at the PPC, giving rise to a movement command. The generation of each vector induces a complementary postural phase during which ERG output stops and learning occurs. Then a new vector is generated and the cycle is repeated. This cyclic, biphasic behavior is controlled by a specialized gated dipole circuit. ERG output autonomously stops in such a way that, across trials, a broad sample of workspace target positions is generated. When the ERG shuts off, a modulator gate opens, copying the PPC into the TPC. Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed due to learning. This learning scheme is called a Vector Associative Map, or VAM. The VAM model is a general-purpose device for autonomous real-time error-based learning and performance of associative maps. The DV stage serves the dual function of reading out new TPCs during performance and reading in new adaptive weights during learning, without a disruption of real-time operation. YAMs thus provide an on-line unsupervised alternative to the off-line properties of supervised error-correction learning algorithms. YAMs and VAM cascades for learning motor-to-motor and spatial-to-motor maps are described. YAM models and Adaptive Resonance Theory (ART) models exhibit complementary matching, learning, and performance properties that together provide a foundation for designing a total sensory-cognitive and cognitive-motor autonomous system.
Resumo:
Self-organizing neural networks have been implemented in a wide range of application areas such as speech processing, image processing, optimization and robotics. Recent variations to the basic model proposed by the authors enable it to order state space using a subset of the input vector and to apply a local adaptation procedure that does not rely on a predefined test duration limit. Both these variations have been incorporated into a new feature map architecture that forms an integral part of an Hybrid Learning System (HLS) based on a genetic-based classifier system. Problems are represented within HLS as objects characterized by environmental features. Objects controlled by the system have preset targets set against a subset of their features. The system's objective is to achieve these targets by evolving a behavioural repertoire that efficiently explores and exploits the problem environment. Feature maps encode two types of knowledge within HLS — long-term memory traces of useful regularities within the environment and the classifier performance data calibrated against an object's feature states and targets. Self-organization of these networks constitutes non-genetic-based (experience-driven) learning within HLS. This paper presents a description of the HLS architecture and an analysis of the modified feature map implementing associative memory. Initial results are presented that demonstrate the behaviour of the system on a simple control task.
Resumo:
It has been shown through a number of experiments that neural networks can be used for a phonetic typewriter. Algorithms can be looked on as producing self-organizing feature maps which correspond to phonemes. In the Chinese language the utterance of a Chinese character consists of a very simple string of Chinese phonemes. With this as a starting point, a neural network feature map for Chinese phonemes can be built up. In this paper, feature map structures for Chinese phonemes are discussed and tested. This research on a Chinese phonetic feature map is important both for Chinese speech recognition and for building a Chinese phonetic typewriter.
Resumo:
The applicability of AI methods to the Chagas' disease diagnosis is carried out by the use of Kohonen's self-organizing feature maps. Electrodiagnosis indicators calculated from ECG records are used as features in input vectors to train the network. Cross-validation results are used to modify the maps, providing an outstanding improvement to the interpretation of the resulting output. As a result, the map might be used to reduce the need for invasive explorations in chronic Chagas' disease.
Resumo:
Let λ1,…,λn be real numbers in (0,1) and p1,…,pn be points in Rd. Consider the collection of maps fj:Rd→Rd given by fj(x)=λjx+(1−λj)pj. It is a well known result that there exists a unique nonempty compact set Λ⊂Rd satisfying Λ=∪nj=1fj(Λ). Each x∈Λ has at least one coding, that is a sequence (ϵi)∞i=1 ∈{1,…,n}N that satisfies limN→∞fϵ1…fϵN(0)=x. We study the size and complexity of the set of codings of a generic x∈Λ when Λ has positive Lebesgue measure. In particular, we show that under certain natural conditions almost every x∈Λ has a continuum of codings. We also show that almost every x∈Λ has a universal coding. Our work makes no assumptions on the existence of holes in Λ and improves upon existing results when it is assumed Λ contains no holes.
Resumo:
Let M -> B, N -> B be fibrations and f(1), f(2): M -> N be a pair of fibre-preserving maps. Using normal bordism techniques we define an invariant which is an obstruction to deforming the pair f(1), f(2) over B to a coincidence free pair of maps. In the special case where the two fibrations axe the same and one of the maps is the identity, a weak version of our omega-invariant turns out to equal Dold`s fixed point index of fibre-preserving maps. The concepts of Reidemeister classes and Nielsen coincidence classes over B are developed. As an illustration we compute e.g. the minimal number of coincidence components for all homotopy classes of maps between S(1)-bundles over S(1) as well as their Nielsen and Reidemeister numbers.
Resumo:
In this note we study coincidence of pairs of fiber-preserving maps f, g : E-1 -> E-2 where E-1, E-2 are S-n-bundles over a space B. We will show that for each homotopy class vertical bar f vertical bar of fiber-preserving maps over B, there is only one homotopy class vertical bar g vertical bar such that the pair (f, g), where vertical bar g vertical bar = vertical bar tau circle f vertical bar can be deformed to a coincidence free pair. Here tau : E-2 -> E-2 is a fiber-preserving map which is fixed point free. In the case where the base is S-1 we classify the bundles, the homotopy classes of maps over S-1 and the pairs which can be deformed to coincidence free. At the end we discuss the self-coincidence problem. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
[EN] Here we present monthly, basin-wide maps of the partial pressure of carbon dioxide (pCO2) for the North Atlantic on a latitude by longitude grid for years 2004 through 2006 inclusive. The maps have been computed using a neural network technique which reconstructs the non-linear relationships between three biogeochemical parameters and marine pCO2. A self organizing map (SOM) neural network has been trained using 389 000 triplets of the SeaWiFSMODIS chlorophyll-a concentration, the NCEP/NCAR reanalysis sea surface temperature, and the FOAM mixed layer depth. The trained SOM was labelled with 137 000 underway pCO2 measurements collected in situ during 2004, 2005 and 2006 in the North Atlantic, spanning the range of 208 to 437atm. The root mean square error (RMSE) of the neural network fit to the data is 11.6?atm, which equals to just above 3 per cent of an average pCO2 value in the in situ dataset. The seasonal pCO2 cycle as well as estimates of the interannual variability in the major biogeochemical provinces are presented and discussed. High resolution combined with basin-wide coverage makes the maps a useful tool for several applications such as the monitoring of basin-wide air-sea CO2 fluxes or improvement of seasonal and interannual marine CO2 cycles in future model predictions. The method itself is a valuable alternative to traditional statistical modelling techniques used in geosciences.
Resumo:
The biological function of neurons can often be understood only in the context of large, highly interconnected networks. These networks typically form two-dimensional topographic maps, such as the retinotopic maps in mammalian visual cortex. Computational simulations of these areas have led to valuable insights about how cortical topography develops and functions, but further progress has been hindered due to the lack of appropriate simulation tools. This paper introduces the freely available Topographica maplevel simulator, originally developed at the University of Texas at Austin and now maintained at the University of Edinburgh, UK. Topographica is designed to make large-scale, detailed models practical. The goal is to allow neuroscientists and computational scientists to work together to understand how topographic maps and their connections organize and operate. This understanding will be crucial for integrating experimental observations into a comprehensive theory of brain function.
Resumo:
'Sensing the self' relies on the ability to distinguish self-generated from external stimuli. It requires functioning mechanisms to establish feelings of agency and ownership. Agency is defined causally, where the subjects action is followed by an effect. Ownership is defined by the features of the effect, independent from the action. In our study, we manipulated these qualities separately. 13 right-handed healthy individuals performed the experiment while 76-channel EEG was recorded. Stimuli consisted of visually presented words, read aloud by the subject. The experiment consisted of six conditions: (a) subjects saw a word, read it aloud, heard it in their own voice; (b) like a, but the word was heard in an unfamiliar voice; (c) subject heard a word in his/her own voice without speaking; (d) like c, but the word was heard in an unfamiliar voice; (e) like a, but subjects heard the word with a delay; (f) subjects read without hearing. ERPs and difference maps were computed for all conditions. Effects were analysed topographically. The N100 (86-172 ms) displayed significant main effects of agency and ownership. The topographies of the two effects shared little common variance, suggesting independent effects. Later effects (174-400 ms) of agency and ownership were topographically similar, suggesting common mechanisms. Replicating earlier studies, significant N100 suppression was observed, with a topography resembling the agency effect. 'Sensing the self' appears to recruit from at least two very distinct processes: an agency assessment that represents causality and an ownership assessment that compares stimulus features with memory content.
Resumo:
The adaptation to the European Higher Education Area (EHEA) is becoming a great challenge for the University Community, especially for its teaching and research staff, which is involved actively in the teaching-learning process. It is also inducing a paradigm change for lecturers and students. Among the methodologies used for processes of teaching innovation, system thinking plays an important role when working mainly with mind maps, and is focused to highlighting the essence of the knowledge, allowing its visual representation. In this paper, a method for using these mind maps for organizing a particular subject is explained. This organization is completed with the definition of duration, precedence relationships and resources for each of these activities, as well as with their corresponding monitoring. Mind maps are generated by means of the MINDMANAGER package whilst Ms-PROJECT is used for establishing tasks relationships, durations, resources, and monitoring. Summarizing, a procedure and the necessary set of applications for self organizing and managing (timed) scheduled teaching tasks has been described in this paper.
Resumo:
Noise maps are usually represented as contour or isolines maps describing the sound levels in a region. Using this kind of representation the user can easily find the noise level assigned to every location in the map. But the acoustic calculations behind the map are not performed for every single location on it; they are only performed in a grid of receivers. The results in this calculation grid are interpolated to draw the isolines or contours. Therefore, the resolution of the calculation grid and the way it was created (rectangular, triangulated, random…) have an effect on the resulting map. In this paper we describe a smart iterative procedure to optimize the quality of the map at a really low additional computational cost, using self-adaptive grids for the acoustic calculations. These self-adaptive grids add new receivers to the sampling grid in those locations where they are expected to be more useful, so that the performance at the output of the interpolator is enhanced. Self-adaptive sampling grids can be used for minimizing the overall error of the map (improving its quality), or for reducing calculation times, and can be also applied selectively to target areas or contour lines. This can be done by the user customizing the maximum number of iterations, the number of new receivers for each iteration, the target isolines, the target quality…