955 resultados para optimization under uncertainty


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central claim of this paper is that the state-contingent approach provides the best way to think about all problems in the economics of uncertainty, including problems of consumer choice, the theory of the firm, and principal-agent relationships. This claim is illustrated by recent developments in, and applications of, the state-contingent approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a problem structuring methodology to assess real option decisions in the face of unpredictability. Based on principles of robustness analysis and scenario planning, we demonstrate how decision-aiding can facilitate participation in projects setting and achieve effective decision making through the use of real options reasoning. We argue that robustness heuristics developed in earlier studies can be practical proxies for real options performance, hence indicators of efficient flexible planning. The developed framework also highlights how to integrate real options solutions in firms’ strategic plans and operating actions. The use of the methodology in a location decision application is provided for illustration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is expected to have wide-ranging impacts on urban areas and creates additional challenges for sustainable development. Urban areas are inextricably linked with climate change, as they are major contributors to it, while also being particularly vulnerable to its impacts. Climate change presents a new challenge to urban areas, not only because of the expected rises in temperature and sea-level, but also the current context of failure to fully address the institutional barriers preventing action to prepare for climate change, or feedbacks between urban systems and agents. Despite the importance of climate change, there are few cities in developing countries that are attempting to address these issues systematically as part of their governance and planning processes. While there is a growing literature on the risks and vulnerabilities related to climate change, as yet there is limited research on the development of institutional responses, the dissemination of relevant knowledge and evaluation of tools for practical planning responses by decision makers at the city level. This thesis questions the dominant assumptions about the capacity of institutions and potential of adaptive planning. It argues that achieving a balance between climate change impacts and local government decision-making capacity is a vital for successful adaptation to the impacts of climate change. Urban spatial planning and wider environmental planning not only play a major role in reducing/mitigating risks but also have a key role in adapting to uncertainty in over future risk. The research focuses on a single province - the biggest city in Vietnam - Ho Chi Minh City - as the principal case study to explore this argument, by examining the linkages between urban planning systems, the structures of governance, and climate change adaptation planning. In conclusion it proposes a specific framework to offer insights into some of the more practical considerations, and the approach emphasises the importance of vertical and horizontal coordination in governance and urban planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a team of multiple agents, the pursuance of a common goal is a defining characteristic. Since agents may have different capabilities, and effects of actions may be uncertain, a common goal can generally only be achieved through a careful cooperation between the different agents. In this work, we propose a novel two-stage planner that combines online planning at both team level and individual level through a subgoal delegation scheme. The proposal brings the advantages of online planning approaches to the multi-agent setting. A number of modifications are made to a classical UCT approximate algorithm to (i) adapt it to the application domains considered, (ii) reduce the branching factor in the underlying search process, and (iii) effectively manage uncertain information of action effects by using information fusion mechanisms. The proposed online multi-agent planner reduces the cost of planning and decreases the temporal cost of reaching a goal, while significantly increasing the chance of success of achieving the common goal. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work provides a holistic investigation into the realm of feature modeling within software product lines. The work presented identifies limitations and challenges within the current feature modeling approaches. Those limitations include, but not limited to, the dearth of satisfactory cognitive presentation, inconveniency in scalable systems, inflexibility in adapting changes, nonexistence of predictability of models behavior, as well as the lack of probabilistic quantification of model’s implications and decision support for reasoning under uncertainty. The work in this thesis addresses these challenges by proposing a series of solutions. The first solution is the construction of a Bayesian Belief Feature Model, which is a novel modeling approach capable of quantifying the uncertainty measures in model parameters by a means of incorporating probabilistic modeling with a conventional modeling approach. The Bayesian Belief feature model presents a new enhanced feature modeling approach in terms of truth quantification and visual expressiveness. The second solution takes into consideration the unclear support for the reasoning under the uncertainty process, and the challenging constraint satisfaction problem in software product lines. This has been done through the development of a mathematical reasoner, which was designed to satisfy the model constraints by considering probability weight for all involved parameters and quantify the actual implications of the problem constraints. The developed Uncertain Constraint Satisfaction Problem approach has been tested and validated through a set of designated experiments. Profoundly stating, the main contributions of this thesis include the following: • Develop a framework for probabilistic graphical modeling to build the purported Bayesian belief feature model. • Extend the model to enhance visual expressiveness throughout the integration of colour degree variation; in which the colour varies with respect to the predefined probabilistic weights. • Enhance the constraints satisfaction problem by the uncertainty measuring of the parameters truth assumption. • Validate the developed approach against different experimental settings to determine its functionality and performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[en] It is known that most of the problems applied in the real life present uncertainty. In the rst part of the dissertation, basic concepts and properties of the Stochastic Programming have been introduced to the reader, also known as Optimization under Uncertainty. Moreover, since stochastic programs are complex to compute, we have presented some other models such as wait-and-wee, expected value and the expected result of using expected value. The expected value of perfect information and the value of stochastic solution measures quantify how worthy the Stochastic Programming is, with respect to the other models. In the second part, it has been designed and implemented with the modeller GAMS and the optimizer CPLEX an application that optimizes the distribution of non-perishable products, guaranteeing some nutritional requirements with minimum cost. It has been developed within Hazia project, managed by Sortarazi association and associated with Food Bank of Biscay and Basic Social Services of several districts of Biscay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to present a general overview of state-of-the-art related to design for uncertainty with a focus on aerospace structures. In particular, a simulation on a FCCZ lattice cell and on the profile shape of a nozzle will be performed. Optimization under uncertainty is characterized by the need to make decisions without complete knowledge of the problem data. When dealing with a complex problem, non-linearity, or optimization, two main issues are raised: the uncertainty of the feasibility of the solution and the uncertainty of the objective value of the function. In the first part, the Design Of Experiments (DOE) methodologies, Uncertainty Quantification (UQ), and then Uncertainty optimization will be deepened. The second part will show an application of the previous theories on through a commercial software. Nowadays multiobjective optimization on high non-linear problem can be a powerful tool to approach new concept solutions or to develop cutting-edge design. In this thesis an effective improvement have been reached on a rocket nozzle. Future work could include the introduction of multi scale modelling, multiphysics approach and every strategy useful to simulate as much possible real operative condition of the studied design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a joint location-inventory model is proposed that simultaneously optimises strategic supply chain design decisions such as facility location and customer allocation to facilities, and tactical-operational inventory management and production scheduling decisions. All this is analysed in a context of demand uncertainty and supply uncertainty. While demand uncertainty stems from potential fluctuations in customer demands over time, supply-side uncertainty is associated with the risk of “disruption” to which facilities may be subject. The latter is caused by external factors such as natural disasters, strikes, changes of ownership and information technology security incidents. The proposed model is formulated as a non-linear mixed integer programming problem to minimise the expected total cost, which includes four basic cost items: the fixed cost of locating facilities at candidate sites, the cost of transport from facilities to customers, the cost of working inventory, and the cost of safety stock. Next, since the optimisation problem is very complex and the number of evaluable instances is very low, a "matheuristic" solution is presented. This approach has a twofold objective: on the one hand, it considers a larger number of facilities and customers within the network in order to reproduce a supply chain configuration that more closely reflects a real-world context; on the other hand, it serves to generate a starting solution and perform a series of iterations to try to improve it. Thanks to this algorithm, it was possible to obtain a solution characterised by a lower total system cost than that observed for the initial solution. The study concludes with some reflections and the description of possible future insights.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current uncertain context that affects both the world economy and the energy sector, with the rapid increase in the prices of oil and gas and the very unstable political situation that affects some of the largest raw materials’ producers, there is a need for developing efficient and powerful quantitative tools that allow to model and forecast fossil fuel prices, CO2 emission allowances prices as well as electricity prices. This will improve decision making for all the agents involved in energy issues. Although there are papers focused on modelling fossil fuel prices, CO2 prices and electricity prices, the literature is scarce on attempts to consider all of them together. This paper focuses on both building a multivariate model for the aforementioned prices and comparing its results with those of univariate ones, in terms of prediction accuracy (univariate and multivariate models are compared for a large span of days, all in the first 4 months in 2011) as well as extracting common features in the volatilities of the prices of all these relevant magnitudes. The common features in volatility are extracted by means of a conditionally heteroskedastic dynamic factor model which allows to solve the curse of dimensionality problem that commonly arises when estimating multivariate GARCH models. Additionally, the common volatility factors obtained are useful for improving the forecasting intervals and have a nice economical interpretation. Besides, the results obtained and methodology proposed can be useful as a starting point for risk management or portfolio optimization under uncertainty in the current context of energy markets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In any decision making under uncertainties, the goal is mostly to minimize the expected cost. The minimization of cost under uncertainties is usually done by optimization. For simple models, the optimization can easily be done using deterministic methods.However, many models practically contain some complex and varying parameters that can not easily be taken into account using usual deterministic methods of optimization. Thus, it is very important to look for other methods that can be used to get insight into such models. MCMC method is one of the practical methods that can be used for optimization of stochastic models under uncertainty. This method is based on simulation that provides a general methodology which can be applied in nonlinear and non-Gaussian state models. MCMC method is very important for practical applications because it is a uni ed estimation procedure which simultaneously estimates both parameters and state variables. MCMC computes the distribution of the state variables and parameters of the given data measurements. MCMC method is faster in terms of computing time when compared to other optimization methods. This thesis discusses the use of Markov chain Monte Carlo (MCMC) methods for optimization of Stochastic models under uncertainties .The thesis begins with a short discussion about Bayesian Inference, MCMC and Stochastic optimization methods. Then an example is given of how MCMC can be applied for maximizing production at a minimum cost in a chemical reaction process. It is observed that this method performs better in optimizing the given cost function with a very high certainty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This artic/e applies a theorem of Nash equilibrium under uncertainty (Dow & Werlang, 1994) to the classic Coumot model of oligopolistic competition. It shows, in particular, how one can map all Coumot equilibrium (which includes the monopoly and the null solutions) with only a function of uncertainty aversion coefficients of producers. The effect of variations in these parameters over the equilibrium quantities are studied, also assuming exogenous increases in the number of matching firms in the game. The Cournot solutions under uncertainty are compared with the monopolistic one. It shows principally that there is an uncertainty aversion level in the industry such that every aversion coefficient beyond it induces firms to produce an aggregate output smaller than the monopoly output. At the end of the artic/e equilibrium solutions are specialized for Linear Demand and for Coumot duopoly. Equilibrium analysis in the symmetric case allows to identify the uncertainty aversion coefficient for the whole industry as a proportional lack of information cost which would be conveyed by market price in the perfect competition case (Lerner Index).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We define a subgame perfect Nash equilibrium under Knightian uncertainty for two players, by means of a recursive backward induction procedure. We prove an extension of the Zermelo-von Neumann-Kuhn Theorem for games of perfect information, i. e., that the recursive procedure generates a Nash equilibrium under uncertainty (Dow and Werlang(1994)) of the whole game. We apply the notion for two well known games: the chain store and the centipede. On the one hand, we show that subgame perfection under Knightian uncertainty explains the chain store paradox in a one shot version. On the other hand, we show that subgame perfection under uncertainty does not account for the leaving behavior observed in the centipede game. This is in contrast to Dow, Orioli and Werlang(1996) where we explain by means of Nash equilibria under uncertainty (but not subgame perfect) the experiments of McKelvey and Palfrey(1992). Finally, we show that there may be nontrivial subgame perfect equilibria under uncertainty in more complex extensive form games, as in the case of the finitely repeated prisoner's dilemma, which accounts for cooperation in early stages of the game.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We define a subgame perfect Nash equilibrium under Knightian uncertainty for two players, by means of a recursive backward induction procedure. We prove an extension of the Zermelo-von Neumann-Kuhn Theorem for games of perfect information, i. e., that the recursive procedure generates a Nash equilibrium under uncertainty (Dow and Werlang(1994)) of the whole game. We apply the notion for two well known games: the chain store and the centipede. On the one hand, we show that subgame perfection under Knightian uncertainty explains the chain store paradox in a one shot version. On the other hand, we show that subgame perfection under uncertainty does not account for the leaving behavior observed in the centipede game. This is in contrast to Dow, Orioli and Werlang(1996) where we explain by means of Nash equilibria under uncertainty (but not subgame perfect) the experiments of McKelvey and Palfrey(1992). Finally, we show that there may be nontrivial subgame perfect equilibria under uncertainty in more complex extensive form games, as in the case of the finitely repeated prisoner's dilemma, which accounts for cooperation in early stages of the game .

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Producer decisionmaking under uncertainty is characterized using indirect objective functions. The characterization is for the class of producers with continuous and nondecreasing preferences over stochastic incomes who face both price and production uncertainty. (C) 2002 Elsevier Science B.V. All rights reserved.