377 resultados para onmidirectional reflector
Resumo:
A passively mode-locked diode end-pumped YVO4/Nd:YVO4 composite crystal laser with a five-mirror folded cavity was first demonstrated in this paper by using a low temperature semiconductor saturable absorber mirror grown by metal organic chemical vapor deposition. Both the Q-switching and continuous-wave mode locking operation were realized experimentally. A stable averaged output power of 10.15 W with pulse width of about 11.2-ps at a repetition rate of 113 MHz was obtained, and the optical-to-optical efficiency of 43% was achieved.
Resumo:
Stable self-starting mode-locking states in a compact Ti: sapphire laser incorporating a home-made SBR with low loss double quanturn-well and low temperature and surface state hybrid absorber are investigated experimentally. The three mode-locking states, i.e. the passive mode-locking with a saturable absorber, the solition mode-locking and the Kerr-lens mode-locking have been successfully demonstrated. In this laser, chirped mirrors are used for dispersion compensation, and the 18 fs pulses are produced from the Kerr-lens mode-locking at 4.5W pump power, and output power is 150mW.
Resumo:
We report on a Si1-xGex/Si multiple quantum-well resonant-cavity-enhanced (RCE) photodetector with a silicon-on-oxide reflector as the bottom mirror operating near 1.3 mu m. The breakdown voltage of the photodetector is above 18 V and the dark current density at 5 V reverse bias is 12 pA/mu m(2). The RCE photodetector shows enhanced responsivity with a clear peak at 1.285 mu m and the peak responsivity is measured around 10.2 mA/W at a reverse bias of 5 V. The external quantum efficiency at 1.3 mu m is measured to be 3.5% under reverse bias of 16 V, which is enhanced three- to fourfold compared with that of a conventional p-i-n photodetector with a Ge content of 0.5 reported in 1995 by Huang [Appl. Phys. Lett. 67, 566 (1995)]. (C) 2000 American Institute of Physics. [S0003-6951(00)00628-8].
Resumo:
Wavelength tunable electro-absorption modulated distributed Bragg reflector lasers (TEMLs) are promising light source in dense wavelength division multiplexing (DWDM) optical fiber communication system due to high modulation speed, small chirp, low drive voltage, compactness and fast wavelength tuning ability. Thus, increased the transmission capacity, the functionality and the flexibility are provided. Materials with bandgap difference as large as 250nm have been integrated on the same wafer by a combined technique of selective area growth (SAG) and quantum well intermixing (QWI), which supplies a flexible and controllable platform for the need of photonic integrated circuits (PIC). A TEML has been fabricated by this technique for the first time. The component has superior characteristics as following: threshold current of 37mA, output power of 3.5mW at 100mA injection and 0V modulator bias voltage, extinction ratio of more than 20 dB with modulator reverse voltage from 0V to 2V when coupled into a single mode fiber, and wavelength tuning range of 4.4nm covering 6 100-GHz WDM channels. A clearly open eye diagram is observed when the integrated EAM is driven with a 10-Gb/s electrical NRZ signal. A good transmission characteristic is exhibited with power penalties less than 2.2 dB at a bit error ratio (BER) of 10(-10) after 44.4 km standard fiber transmission.
Resumo:
A two-section offset quantum-well structure tunable laser with a tuning range of 7 nm was fabricated using offset quantum-well inethod. The distributed Bragg reflector (DBR) was realized just by selectively wet etching the multiquantum-well (MQW) layer above the quaternary lower waveguide. A threshold current of 32 mA and an output power of 9 mW at 100 mA were achieved. Furthermore, with this offset structure method, a distributed feedback (DFB) laser was integrated with an electro-absorption modulator (EAM), which was capable of producing 20 dB of optical extinction.
Resumo:
An integratable distributed Bragg reflector laser is fabricated by low-energy ion implantation induced quantum well intermixing. A 4.6nm quasi-continuous wavelength tuning range is achieved by controlling phase current and grating current simultaneously,and side mode suppression ratio maintains over 30dB throughout the tuning range except a few mode jump points.
Resumo:
A novel self-aligned coupled waveguide (SACW) multi-quantum-well (MQW) distributed Bragg reflector (DBR) laser is proposed and demonstrated for the first time. By selectively removing the MQW layer and leaving the low SCH/SACW layer the Bragg grating is partially formed on this layer. By optimizing the thickness of the low SCH/SACW layer, a ~80% coupling efficiency between the MQW gain region and the passive region are obtained. The typical threshold current of the SACW DBR laser is 39 mA, the slope efficiency can reach to 0.2 mW/mA and the output power is more than 20 mW with a more than 30dB side mode suppression ratio.
Resumo:
The tunable BIG-RW distributed Bragge reflector lasers with two different coupling coefficient gratings are proposed and fabricated.The threshold current of the laser is 38mA and the output power is more than 8mW.The tunable range of tthe laser is 3.2nm and the side moded suppression ratio is more than 30dB.The variation of the output power within the tunable wavelength range is less than 0.3dB
Resumo:
The two-section tunable ridge waveguide distributed Bragg reflector (DBR) laser fabricated by the selective intermixing of an InGaAsP-InGaAsP quantum well structure is presented. The threshold current of the laser is 51mA. The tunable range of the laser is 4.6nm, and the side mode suppression ratio (SMSR) is 40dB.
Resumo:
A novel silicon-on-reflector substrate for Si-based resonant-cavity-enhanced photodetectors has been fabricated by using Si-based sol-gel and smart-cut techniques. The Si/SiO2 Bragg reflector is controlled in situ by electron beam evaporation and the thickness can be adjusted to get high reflectivity. The reflectance spectra of the silicon-on-reflector substrate with five pairs of Si/SiO2 reflector have been measured and simulated by transfer matrix model. The reflectivity at operating wavelength is close to 100%. Based on the silicon-on-reflector substrate, SiGe/Si multiple quantum wells resonant-cavity-enhanced photodetectors for 1.3 mu m wavelength have been designed and simulated. Ten-fold enhancement of the quantum efficiency of resonant-cavity-enhanced photodetectors compared with conventional photodetectors is predicted.
Resumo:
To look for gas hydrate, 22 multi-channel and 3 single-channel seismic lines on the East China Sea (ECS) shelf slope and at the bottom of the Okinawa Trough were examined. It was found that there was indeed bottom simulating reflector (BSR) occurrence, but it is very rare. Besides several BSRs, a gas seepage was also found. As shown by the data, both the BSR and gas seepage are all related with local geological structures, such as mud diapir, anticline, and fault-controlled graben-like structure. However, similar structural "anomalies" are quite common in the tectonically very active Okinawa Trough region, but very few of them have developed BSR or gas seepage. The article points out that the main reason is probably the low concentration of organic carbon of the sediment in this area. It was speculated that the rare occurrence of gas hydrates in this region is governed by structure-controlled fluid flow. Numerous faults and fractures form a network of high-permeability channels in the sediment and highly fractured igneous basement to allow fluid circulation and ventilation. Fluid flow in this tectonic environment is driven primarily by thermal buoyancy and takes place on a wide range of spatial scales. The fluid flow may play two roles to facilitate hydrate formation: to help gather enough methane into a small area and to modulate the thermal regime.