848 resultados para imaged-based control scheme
Resumo:
Urinary schistosomiasis remains a significant burden for Africa and the Middle East. The success of population-based control programs will depend on their impact, over many years, on Schistosoma haematobium reinfection and associated disease. In a multi-year (1984-1992) control program in Kenya, we examined risk for S. haematobium reinfection and late disease during and after annual school-based treatment. In this setting, long-term risk of new infection was independently associated with location, age, hematuria, and incomplete treatment, but not with sex or frequency of water contact. Thus, very local environmental features and age-related factors played an important role in S. haematobium transmission, such that population-based control programs should optimally tailor their efforts to local conditions on a village-by-village basis. In 2001-2002, the late benefits of earlier participation in school-based antischistosomal therapy were estimated in a cohort of formerly-treated adult residents compared to never-treated adults from the same villages. Among age-matched subjects, current infection prevalence was lower among those who had received remote therapy. In addition, prevalence of bladder abnormality was lower in the treated group, who were free of severe bladder disease. Treatment of affected adults resulted in rapid resolution of infection and any detectable bladder abnormalities. We conclude that continued treatment into adulthood, as well as efforts at long-term prevention of infection (transmission control) are necessary to achieve optimal morbidity control in affected communities.
Resumo:
Proposes a behavior-based scheme for high-level control of autonomous underwater vehicles (AUVs). Two main characteristics can be highlighted in the control scheme. Behavior coordination is done through a hybrid methodology, which takes in advantages of the robustness and modularity in competitive approaches, as well as optimized trajectories
Resumo:
This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors
Resumo:
In this paper we face the problem of positioning a camera attached to the end-effector of a robotic manipulator so that it gets parallel to a planar object. Such problem has been treated for a long time in visual servoing. Our approach is based on linking to the camera several laser pointers so that its configuration is aimed to produce a suitable set of visual features. The aim of using structured light is not only for easing the image processing and to allow low-textured objects to be treated, but also for producing a control scheme with nice properties like decoupling, stability, well conditioning and good camera trajectory
Resumo:
We present a feedback control scheme to stabilize unstable cellular patterns during the directional solidification of a binary alloy. The scheme is based on local heating of cell tips which protrude ahead of the mean position of all tips in the array. The feasibility of this scheme is demonstrated using phase-field simulations and, experimentally, using a real-time image processing algorithm, to track cell tips, coupled with a movable laser spot array device to heat the tips locally. We demonstrate, both numerically and experimentally, that spacings well below the threshold for a period-doubling instability can be stabilized. As predicted by the numerical calculations, cellular arrays become stable with uniform spacing through the feedback control which is maintained with minimal heating.
Resumo:
This paper presents a control strategy for blood glucose(BG) level regulation in type 1 diabetic patients. To design the controller, model-based predictive control scheme has been applied to a newly developed diabetic patient model. The controller is provided with a feedforward loop to improve meal compensation, a gain-scheduling scheme to account for different BG levels, and an asymmetric cost function to reduce hypoglycemic risk. A simulation environment that has been approved for testing of artificial pancreas control algorithms has been used to test thecontroller. The simulation results show a good controller performance in fasting conditions and meal disturbance rejection, and robustness against model–patient mismatch and errors in mealestimation
Resumo:
Line converters have become an attractive AC/DC power conversion solution in industrial applications. Line converters are based on controllable semiconductor switches, typically insulated gate bipolar transistors. Compared to the traditional diode bridge-based power converters line converters have many advantageous characteristics, including bidirectional power flow, controllable de-link voltage and power factor and sinusoidal line current. This thesis considers the control of the lineconverter and its application to power quality improving. The line converter control system studied is based on the virtual flux linkage orientation and the direct torque control (DTC) principle. A new DTC-based current control scheme is introduced and analyzed. The overmodulation characteristics of the DTC converter are considered and an analytical equation for the maximum modulation index is derived. The integration of the active filtering features to the line converter isconsidered. Three different active filtering methods are implemented. A frequency-domain method, which is based on selective harmonic sequence elimination, anda time-domain method, which is effective in a wider frequency band, are used inharmonic current compensation. Also, a voltage feedback active filtering method, which mitigates harmonic sequences of the grid voltage, is implemented. The frequency-domain and the voltage feedback active filtering control systems are analyzed and controllers are designed. The designs are verified with practical measurements. The performance and the characteristics of the implemented active filtering methods are compared and the effect of the L- and the LCL-type line filteris discussed. The importance of the correct grid impedance estimate in the voltage feedback active filter control system is discussed and a new measurement-based method to obtain it is proposed. Also, a power conditioning system (PCS) application of the line converter is considered. A new method for correcting the voltage unbalance of the PCS-fed island network is proposed and experimentally validated.
Resumo:
Thedirect torque control (DTC) has become an accepted vector control method besidethe current vector control. The DTC was first applied to asynchronous machines,and has later been applied also to synchronous machines. This thesis analyses the application of the DTC to permanent magnet synchronous machines (PMSM). In order to take the full advantage of the DTC, the PMSM has to be properly dimensioned. Therefore the effect of the motor parameters is analysed taking the control principle into account. Based on the analysis, a parameter selection procedure is presented. The analysis and the selection procedure utilize nonlinear optimization methods. The key element of a direct torque controlled drive is the estimation of the stator flux linkage. Different estimation methods - a combination of current and voltage models and improved integration methods - are analysed. The effect of an incorrect measured rotor angle in the current model is analysed andan error detection and compensation method is presented. The dynamic performance of an earlier presented sensorless flux estimation method is made better by improving the dynamic performance of the low-pass filter used and by adapting the correction of the flux linkage to torque changes. A method for the estimation ofthe initial angle of the rotor is presented. The method is based on measuring the inductance of the machine in several directions and fitting the measurements into a model. The model is nonlinear with respect to the rotor angle and therefore a nonlinear least squares optimization method is needed in the procedure. A commonly used current vector control scheme is the minimum current control. In the DTC the stator flux linkage reference is usually kept constant. Achieving the minimum current requires the control of the reference. An on-line method to perform the minimization of the current by controlling the stator flux linkage reference is presented. Also, the control of the reference above the base speed is considered. A new estimation flux linkage is introduced for the estimation of the parameters of the machine model. In order to utilize the flux linkage estimates in off-line parameter estimation, the integration methods are improved. An adaptive correction is used in the same way as in the estimation of the controller stator flux linkage. The presented parameter estimation methods are then used in aself-commissioning scheme. The proposed methods are tested with a laboratory drive, which consists of a commercial inverter hardware with a modified software and several prototype PMSMs.
Resumo:
The need for high performance, high precision, and energy saving in rotating machinery demands an alternative solution to traditional bearings. Because of the contactless operation principle, the rotating machines employing active magnetic bearings (AMBs) provide many advantages over the traditional ones. The advantages such as contamination-free operation, low maintenance costs, high rotational speeds, low parasitic losses, programmable stiffness and damping, and vibration insulation come at expense of high cost, and complex technical solution. All these properties make the use of AMBs appropriate primarily for specific and highly demanding applications. High performance and high precision control requires model-based control methods and accurate models of the flexible rotor. In turn, complex models lead to high-order controllers and feature considerable computational burden. Fortunately, in the last few years the advancements in signal processing devices provide new perspective on the real-time control of AMBs. The design and the real-time digital implementation of the high-order LQ controllers, which focus on fast execution times, are the subjects of this work. In particular, the control design and implementation in the field programmable gate array (FPGA) circuits are investigated. The optimal design is guided by the physical constraints of the system for selecting the optimal weighting matrices. The plant model is complemented by augmenting appropriate disturbance models. The compensation of the force-field nonlinearities is proposed for decreasing the uncertainty of the actuator. A disturbance-observer-based unbalance compensation for canceling the magnetic force vibrations or vibrations in the measured positions is presented. The theoretical studies are verified by the practical experiments utilizing a custom-built laboratory test rig. The test rig uses a prototyping control platform developed in the scope of this work. To sum up, the work makes a step in the direction of an embedded single-chip FPGA-based controller of AMBs.
Resumo:
The increasing power demand and emerging applications drive the design of electrical power converters into modularization. Despite the wide use of modularized power stage structures, the control schemes that are used are often traditional, in other words, centralized. The flexibility and re-usability of these controllers are typically poor. With a dedicated distributed control scheme, the flexibility and re-usability of the system parts, building blocks, can be increased. Only a few distributed control schemes have been introduced for this purpose, but their breakthrough has not yet taken place. A demand for the further development offlexible control schemes for building-block-based applications clearly exists. The control topology, communication, synchronization, and functionality allocationaspects of building-block-based converters are studied in this doctoral thesis. A distributed control scheme that can be easily adapted to building-block-based power converter designs is developed. The example applications are a parallel and series connection of building blocks. The building block that is used in the implementations of both the applications is a commercial off-the-shelf two-level three-phase frequency converter with a custom-designed controller card. The major challenge with the parallel connection of power stages is the synchronization of the building blocks. The effect of synchronization accuracy on the system performance is studied. The functionality allocation and control scheme design are challenging in the seriesconnected multilevel converters, mainly because of the large number of modules. Various multilevel modulation schemes are analyzed with respect to the implementation, and this information is used to develop a flexible control scheme for modular multilevel inverters.
Resumo:
This thesis investigates the pressure-based control of a variable-speed-driven pump system in the case of existing output pressure measurement and in the case of sensorless system, where the actual output pressure value is calculated with the steady state estimator.
Resumo:
The goal of this research is to develop the prototype of a tactile sensing platform for anthropomorphic manipulation research. We investigate this problem through the fabrication and simple control of a planar 2-DOF robotic finger inspired by anatomic consistency, self-containment, and adaptability. The robot is equipped with a tactile sensor array based on optical transducer technology whereby localized changes in light intensity within an illuminated foam substrate correspond to the distribution and magnitude of forces applied to the sensor surface plane. The integration of tactile perception is a key component in realizing robotic systems which organically interact with the world. Such natural behavior is characterized by compliant performance that can initiate internal, and respond to external, force application in a dynamic environment. However, most of the current manipulators that support some form of haptic feedback either solely derive proprioceptive sensation or only limit tactile sensors to the mechanical fingertips. These constraints are due to the technological challenges involved in high resolution, multi-point tactile perception. In this work, however, we take the opposite approach, emphasizing the role of full-finger tactile feedback in the refinement of manual capabilities. To this end, we propose and implement a control framework for sensorimotor coordination analogous to infant-level grasping and fixturing reflexes. This thesis details the mechanisms used to achieve these sensory, actuation, and control objectives, along with the design philosophies and biological influences behind them. The results of behavioral experiments with a simple tactilely-modulated control scheme are also described. The hope is to integrate the modular finger into an %engineered analog of the human hand with a complete haptic system.
Resumo:
Proposes a behavior-based scheme for high-level control of autonomous underwater vehicles (AUVs). Two main characteristics can be highlighted in the control scheme. Behavior coordination is done through a hybrid methodology, which takes in advantages of the robustness and modularity in competitive approaches, as well as optimized trajectories
Resumo:
This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors
Resumo:
In this paper we face the problem of positioning a camera attached to the end-effector of a robotic manipulator so that it gets parallel to a planar object. Such problem has been treated for a long time in visual servoing. Our approach is based on linking to the camera several laser pointers so that its configuration is aimed to produce a suitable set of visual features. The aim of using structured light is not only for easing the image processing and to allow low-textured objects to be treated, but also for producing a control scheme with nice properties like decoupling, stability, well conditioning and good camera trajectory