981 resultados para decentralized energy production


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines some of the normative aspects of community energy programmes — defined here as decentralized forms of energy production and distributed energy technologies where production decisions are made as close as possible to sources of consumption. Such projects might also display a degree of separation from the formal political process. The development of a community energy system often generates a great deal of debate about both the degree of public support for such programmes and the values around which programmes ought to be organized. Community energy programmes also raise important issues regarding the energy choice problem, including questions of process, that is, by whom a project is developed and the influence of both community and exogenous actors, as well as certain outcome issues regarding the spatial and social distribution of energy. The case studies, drawn from community energy programmes in both the United States and the United Kingdom, allow for a careful examination of all of these factors, considering in particular the complex interplay and juxtaposition between the ideas of 'public value' and 'public values'.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The castor bean crop (Ricinus communis L.) has acquired prestige due to industries interest in the oil quality and recently for new sources of energy demand. The experiment that served as basis for the data used in this study was conducted at the Lageado Experimental Farm, in Botucatu - SP, 2008. This study aimed to avaluate the crop viability through energy balance and energy efficiency since the implantation until biodiesel production using parameters of consumption in operational management for installation and maintenance of culture harvest and oil production. The soil management operations, sow and harvest consumed the total of 266.20 MJ ha(-1), gathering with the fertilizers, pesticides, fuels, lubricants, labor, seed and industrial processing totaled 56,808 MJ ha(-1) of energy inputs. The energy production was 72,814.00 MJ ha(-1). The industry still lacks studies thal would contribution data collection and more specific energy coefficients. The castor beans cultivation was considered efficient allowing again of 15983.44 MJ ha(-1) equivalent to about 415 liters of diesel oil.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este documento apresenta o trabalho desenvolvido no âmbito da disciplina de “Dissertação/Projeto/Estágio”, do 2º ano do Mestrado em Energias Sustentáveis. O crescente consumo energético das sociedades desenvolvidas e emergentes, associado ao consequente aumento dos custos de energia e dos danos ambientais resultantes, promove o desenvolvimento de novas formas de produção de energia, as quais têm como prioridade a sua obtenção ao menor custo possível e com reduzidos impactos ambientais. De modo a poupar os recursos naturais e reduzir a emissão com gases de efeito de estufa, é necessária a diminuição do consumo de energia produzida a partir de combustíveis fósseis. Assim, devem ser criadas alternativas para um futuro sustentável, onde as fontes renováveis de energia assumam um papel fundamental. Neste sentido, a produção de energia elétrica, através de sistemas solares fotovoltaicos, surge como uma das soluções. A presente dissertação tem como principal objetivo a realização do dimensionamento de uma central de miniprodução fotovoltaica, com ligação à rede elétrica, em uma exploração agrícola direcionada à indústria de laticínios, e o seu respetivo estudo de viabilidade económica. A exploração agrícola, que serve de objeto de estudo, está localizada na Ilha Graciosa, Açores, sendo a potência máxima a injetar na Rede Elétrica de Serviço Público, pela central de miniprodução, de 10 kW. Para o dimensionamento foi utilizado um software apropriado e reconhecido na área da produção de energia elétrica através de sistemas fotovoltaicos – o PVsyst –, compreendendo as seguintes etapas: a) definição das caraterísticas do local e do projeto; b) seleção dos módulos fotovoltaicos; c) seleção do inversor; d) definição da potência de ligação à rede elétrica da unidade de miniprodução. Posteriormente, foram estudadas diferentes hipóteses de sistemas fotovoltaicos, que se distinguem na opção de estrutura de fixação utilizada: dois sistemas fixos e dois com eixo incorporado. No estudo de viabilidade económica foram realizadas duas análises distintas a cada um dos sistemas fotovoltaicos considerados no dimensionamento, nomeadamente: uma análise em regime remuneratório bonificado e uma análise em regime remuneratório geral. Os resultados obtidos nos indicadores económicos do estudo de viabilidade económica realizado, serviram de apoio à decisão pelo sistema fotovoltaico mais favorável ao investimento. Conclui-se que o sistema fotovoltaico com inclinação adicional é a opção mais vantajosa em ambos os regimes remuneratórios analisados. Comprova-se, assim, que o sistema fotovoltaico com maior valor de produção de energia elétrica anual, que corresponde ao sistema fotovoltaico de dois eixos, não é a opção com maior rentabilidade em termos económicos, isto porque a remuneração proveniente da sua produção excedente não é suficiente para colmatar o valor do investimento mais acentuado de modo a obter indicadores económicos mais favoráveis, que os do sistema fotovoltaico com inclinação adicional. De acordo com o estudo de viabilidade económica efetuado independentemente do sistema fotovoltaico que seja adotado, é recuperado o investimento realizado, sendo a remuneração efetiva superior à que foi exigida. Assim, mesmo tendo em consideração o risco associado, comprova-se que todos os sistemas fotovoltaicos, em qualquer dos regimes remuneratórios, correspondem a investimentos rentáveis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, energy production for autonomous underwater vehicles is investigated. This project is part of a bigger project called TURTLE. The autonomous vehicles perform oceanic researches at seabed for which they are intended to be kept operational underwater for several months. In order to ful l a long-term underwater condition, powerful batteries are combined with \micro- scale" energy production on the spot. This work tends to develop a system that generates power up to a maximum of 30 W. Latter energy harvesting structure consists basically of a turbine combined with a generator and low-power electronics to adjust the achieved voltage to a required battery charger voltage. Every component is examined separately hence an optimum can be de ned for all, and subsequently also an overall optimum. Di erent design parameters as e.g. number of blades, solidity ratio and cross-section area are compared for di erent turbines, in order to see what is the most feasible type. Further, a generator is chosen by studying how ux distributions might be adjusted to low velocities, and how cogging torque can be excluded by adapted designs. Low-power electronics are con gured in order to convert and stabilize heavily varying three-phase voltages to a constant, recti ed voltage which is usable for battery storage. Clearly, di erent component parameters as maximum power and torque are matched here to increase the overall power generation. Furthermore an overall maximum power is set up for achieving a maximum power ow at load side. Due to among others typical low velocities of about 0.1 to 0.5 m/s, and constructing limits of the prototype, the vast range of components is restricted to only a few that could be used. Hence, a helical turbine is combined in a direct drive mode to a coreless-stator axial- ux permanent-magnet generator, from which the output voltage is adjusted subsequently by a recti er, impedance matching unit, upconverter circuit and an overall control unit to regulate di erent component parameters. All these electronics are combined in a closed-loop design to involve positive feedback signals. Furthermore a theoretical con guration for the TURTLE vehicle is described in this work and a solution is proposed that might be implemented, for which several design tests are performable in a future study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente, Perfil de Gestão e Sistemas Ambientais

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sustainability is frequently defined by its three pillars: economically viable, socially equitable, and environmentally bearable. Consequently the evaluation of the sustainability of any decision, public or private, requires information on these three dimensions. This paper focuses on social sustainability. In the context of renewable energy sources, the examination of social sustainability requires the analysis of not only the efficiency but also the equity of its welfare impacts. The present paper proposes and applies a methodology to generate the information necessary to do a proper welfare analysis of the social sustainability of renewable energy production facilities. This information is key both for an equity and an efficiency analysis. The analysis focuses on the case of investments in renewable energy electricity production facilities, where the impacts on local residents’ welfare are often significantly different than the welfare effects on the general population. We apply the contingent valuation method to selected facilities across the different renewable energy power plants located in Portugal and conclude that local residents acknowledge differently the damage sustained by the type, location and operation of the plants. The results from these case studies attest to the need of acknowledging and quantifying the negative impacts on local communities when assessing the economic viability, social equity and environmental impact of renewable energy projects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In its 2007 Session, the Iowa General Assembly passed, and Governor Culver signed into law, extensive and far-reaching state energy policy legislation. This legislation created the Iowa Office of Energy Independence and the Iowa Power Fund. It also required a report to be issued each year detailing: • The historical use and distribution of energy in Iowa. • The growth rate of energy consumption in Iowa, including rates of growth for each energy source. • A projection of Iowa’s energy needs through the year 2025 at a minimum. • The impact of meeting Iowa’s energy needs on the economy of the state, including the impact of energy production and use on greenhouse gas emissions. • An evaluation of renewable energy sources, including the current and future technological potential for such sources. Much of the energy information for this report has been derived from the on-line resources of the Energy Information Administration (EIA) of the United States Department of Energy (USDOE). The EIA provides policy-independent data, forecasts and analyses on energy production, stored supplies, consumption and prices. For complete, economy-wide information, the most recent data available is for the year 2008. For some energy sectors, more current data is available from EIA and other sources and, when available, such information has been included in this report.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Office of Energy Independence (Office) is the state agency responsible for setting the strategic direction, directing policy, conducting energy related outreach and administering programs that optimize energy production and efficiency to secure Iowa’s clean energy future. The Office performed its duties as set forth in Iowa Code 469.3(2), managed the Iowa Power Fund and federal U.S. Department of Energy (DOE) grants funded through the American Recovery and Reinvestment Act (ARRA), as well as an annual federal appropriation that supports the Office’s operational costs. As part of the national network for energy security, the Office is responsible for ensuring state emer- gency preparedness and quick recovery and restoration from any energy supply disruptions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The federal government is aggressively promoting biofuels as an answer to global climate change and dependence on imported sources of energy. Iowa has quickly become a leader in the bioeconomy and wind energy production, but meeting the United States Department of Energy’s goal having 20% of U.S. transportation fuels come from biologically based sources by 2030 will require a dramatic increase in ethanol and biodiesel production and distribution. At the same time, much of Iowa’s rural transportation infrastructure is near or beyond its original design life. As Iowa’s rural roadway structures, pavements, and unpaved roadways become structurally deficient or functionally obsolete, public sector maintenance and rehabilitation costs rapidly increase. More importantly, costs to move all farm products will rapidly increase if infrastructure components are allowed to fail; longer hauls, slower turnaround times, and smaller loads result. When these results occur on a large scale, Iowa will start to lose its economic competitive edge in the rapidly developing bioeconomy. The primary objective of this study was to document the current physical and fiscal impacts of Iowa’s existing biofuels and wind power industries. A four-county cluster in north-central Iowa and a two-county cluster in southeast Iowa were identified through a local agency survey as having a large number of diverse facilities and were selected for the traffic and physical impact analysis. The research team investigated the large truck traffic patterns on Iowa’s secondary and local roads from 2002 to 2008 and associated those with the pavement condition and county maintenance expenditures. The impacts were quantified to the extent possible and visualized using geographic information system (GIS) tools. In addition, a traffic and fiscal assessment tool was developed to understand the impact of the development of the biofuels on Iowa’s secondary road system. Recommended changes in public policies relating to the local government and to the administration of those policies included standardizing the reporting and format of all county expenditures, conducting regular pavement evaluations on a county’s system, cooperating and communicating with cities (adjacent to a plant site), considering utilization of tax increment financing (TIF) districts as a short-term tool to produce revenues, and considering alternative ways to tax the industry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this work was to evaluate elephant grass (Pennisetum purpureum Schum.) genotypes for bioenergy production by direct biomass combustion. Five elephant grass genotypes grown in two different soil types, both of low fertility, were evaluated. The experiment was carried out at Embrapa Agrobiologia field station in Seropédica, RJ, Brazil. The design was in randomized complete blocks, with split plots and four replicates. The genotypes studied were Cameroon, Bag 02, Gramafante, Roxo and CNPGL F06-3. Evaluations were made for biomass production, total biomass nitrogen, biomass nitrogen from biological fixation, carbon/nitrogen and stem/leaf ratios, and contents of fiber, lignin, cellulose and ash. The dry matter yields ranged from 45 to 67 Mg ha-1. Genotype Roxo had the lowest yield and genotypes Bag 02 and Cameroon had the highest ones. The biomass nitrogen accumulation varied from 240 to 343 kg ha-1. The plant nitrogen from biological fixation was 51% in average. The carbon/nitrogen and stem/leaf ratios and the contents of fiber, lignin, cellulose and ash did not vary among the genotypes. The five genotypes are suitable for energy production through combustion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy demand is an important constraint on neural signaling. Several methods have been proposed to assess the energy budget of the brain based on a bottom-up approach in which the energy demand of individual biophysical processes are first estimated independently and then summed up to compute the brain's total energy budget. Here, we address this question using a novel approach that makes use of published datasets that reported average cerebral glucose and oxygen utilization in humans and rodents during different activation states. Our approach allows us (1) to decipher neuron-glia compartmentalization in energy metabolism and (2) to compute a precise state-dependent energy budget for the brain. Under the assumption that the fraction of energy used for signaling is proportional to the cycling of neurotransmitters, we find that in the activated state, most of the energy ( approximately 80%) is oxidatively produced and consumed by neurons to support neuron-to-neuron signaling. Glial cells, while only contributing for a small fraction to energy production ( approximately 6%), actually take up a significant fraction of glucose (50% or more) from the blood and provide neurons with glucose-derived energy substrates. Our results suggest that glycolysis occurs for a significant part in astrocytes whereas most of the oxygen is utilized in neurons. As a consequence, a transfer of glucose-derived metabolites from glial cells to neurons has to take place. Furthermore, we find that the amplitude of this transfer is correlated to (1) the activity level of the brain; the larger the activity, the more metabolites are shuttled from glia to neurons and (2) the oxidative activity in astrocytes; with higher glial pyruvate metabolism, less metabolites are shuttled from glia to neurons. While some of the details of a bottom-up biophysical approach have to be simplified, our method allows for a straightforward assessment of the brain's energy budget from macroscopic measurements with minimal underlying assumptions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Finland has large forest fuel resources. However, the use of forest fuels for energy production has been low, except for small-scale use in heating. According to national action plans and programs related to wood energy promotion, the utilization of such resources will be multiplied over the next few years. The most significant part of this growth will be based on the utilization of forest fuels, produced from logging residues of regeneration fellings, in industrial and municipal power and heating plants. Availability of logging residues was analyzed by means of resource and demand approaches in order to identify the most suitable regions with focus on increasing the forest fuel usage. The analysis included availability and supply cost comparisons between power plant sites and resource allocation in a least cost manner, and between a predefined power plant structure under demand and supply constraints. Spatial analysis of worksite factors and regional geographies were carried out using the GIS-model environment via geoprocessing and cartographic modeling tools. According to the results of analyses, the cost competitiveness of forest fuel supply should be improved in order to achieve the designed objectives in the near future. Availability and supply costs of forest fuels varied spatially and were very sensitive to worksite factors and transport distances. According to the site-specific analysis the supply potential between differentlocations can be multifold. However, due to technical and economical reasons ofthe fuel supply and dense power plant infrastructure, the supply potential is limited at plant level. Therefore, the potential and supply cost calculations aredepending on site-specific matters, where regional characteristics of resourcesand infrastructure should be taken into consideration, for example by using a GIS-modeling approach constructed in this study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy industry has gone through major changes globally in past two decades. Liberalization of energy markets has led companies to integrate both vertically and horizontally. Growing concern on sustainable development and aims to decrease greenhouse gases in future will increase the portion of renewable energy in total energy production. Purpose of this study was to analyze using statistical methods, what impacts different strategic choices has on biggest European and North American energy companies’ performance. Results show that vertical integration, horizontal integration and use of renewable energy in production had the most impact on profitability. Increase in level of vertical integration decreased companies’ profitability, while increase in horizontal integration improved companies’ profitability. Companies that used renewable energy in production were less profitable than companies not using renewable energy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Matalaenergiarakentaminen asettaa uudenlaisia haasteita ja mahdollisuuksia lämpöenergian tuotannolle. Lämmitysjärjestelmien mitoitustehot eivät laske samassa suhteessa kuin lämmitysenergiankulutus, mikä suosii alhaisia investointeja muuttuvien kulujen kustannuksella. Työssä tutkittiin viittä vaihtoehtoista tapaa tuottaa kohdealueen rakennuskannan vuotuinen lämpöenergiantarve. Kohdealue koostui pääasiallisesti matalaenergiakerrostaloista. Neljä vaihtoehtoa perustui kaukolämpöön ja yksi matalaenergiaverkkoon varustettuna kiinteistökohtaisilla lämpöpumpuilla. Lähialueen jätevedenpuhdistamolle sijoitettu keskitetty lämpöpumppuratkaisu muodostui kokonaiskustannuksiltaan edullisimmaksi vaihtoehdoksi tuottaa kohdealueen rakennuskannan lämpöenergiantarve. Haketta polttoaineenaan käyttävä pien-CHPlaitos omasi vastaavasti pienimmän hiilijalanjäljen, mutta oli kustannusrakenteeltaan epäedullinen. Kohdealue ja vaihtoehtoiset lämmitysjärjestelmät mallinnettiin GaBi 4.3 elinkaarimallinnusohjelmistolla vaihtoehtojen hiilijalanjälkien selvittämiseksi.