523 resultados para argila
Resumo:
Pós-graduação em Química - IQ
Resumo:
The slugde from decanters in Water Treatment Plants (WTP) has different composition varying, according to the region, coagulant type and dosages, the plant layout. In this work, the physical characterization of the sludge generated from decenties (ETAII the municipality of Rio Claro, Brazil), the manufacture of bodies of evidence-sludge mixture of clay (with humidity of 8% and concentrations of sludge, 5, 15 and 30%) the testing technology after burning the mixture to a temperature of 950 ° C were investigated. The main aim assess the possibility of its use as raw material in the ceramic red production. For comparison of the obtained results it was used values of the testing technology of bodies of evidence only with clay, prepared under the same conditions. In general, the addition of sludge from ETA made worse the properties of the ceramic body, however, the values obtained from the tests on the concentration of 5% of sludge, still remain within the acceptable limits for the production of red pottery pieces.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
For orchid cultivation in containers is essential to select the right substrate, since this will influence the quality of the final product, it serve as a support for the root system of the plants. This study aimed to evaluate different agricultural residues and expanded clay in Oncidium baueri Lindl. orchid cultivation. The plants were subjected to treatments: pinus husk + carbonized rice husk, pinus husk + coffee husk, pinus husk + fibered coconut, pecan nut husk, expanded clay, fibered coconut, coffee husk, carbonized rice husk, pinus husk. After eleven months of the experiment, the following variables were evaluated: plant height; largest pseudo-bulb diameter; number of buds; shoot fresh dry matter; the longest root length; number of roots; root fresh matter; root dry matter; and electric conductivity; pH and water retention capacity of the substrates. Except the expanded clay, the other substrates showed satisfactory results in one or more traits. Standing out among these substrates pinus husk + coffee husk and pine bark + fibered coconut, which favored the most vegetative and root characteristic of the orchid. The mixture of pinus husk + coffee husk and pinus husk + fibered coconut, provided the best results in vegetative and root growth of the orchid Oncidium baueri and the expanded clay did not show favorable results in the cultivation of this species.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Compósitos de poliestireno/montmorilonita (PS/MMT) contendo 2,5% em peso de argila foram preparados com dois tipos de argila modificada com sais quaternários de amônio. Também foram preparadas amostras do PS + sal quaternário de amônio, utilizando-se proporção de sal semelhante à usada na modificação da argila. Todas as amostras foram expostas à radiação UV por períodos de até 12 semanas, e em seguida foram realizados testes para avaliar as modificações em massa molar, propriedades mecânicas (tração e impacto), estrutura química (FTIR) e superfície de fratura (MEV) dessas amostras. Os resultados mostraram que compostos metálicos existentes na argila catalisam o processo fotodegradativo do PS e a presença isolada do sal não altera significativamente o comportamento do PS frente à radiação UV.
Resumo:
Este trabalho aborda o estudo do comportamento mecânico e térmico do nanocompósito híbrido de polipropileno com uma argila brasileira bentonítica do Estado da Paraíba (PB), conhecida como \"chocolate\" com concentração de 1, 2 e 5 % em massa com a adição de 1 e 2 % em massa de celulose proveniente de papel descartado. Foi utilizado nesse nanocompósito o agente compatibilizante polipropileno graftizado com anidrido maleico PP-g-AM com 3 % de concentração em massa, através da técnica de intercalação do fundido utilizando uma extrusora de dupla-rosca e, em seguida, os corpos de prova foram confeccionados em uma injetora. O comportamento mecânico foi avaliado pelos ensaios de tração, flexão e impacto. O comportamento térmico foi avaliado pelas técnicas de calorimetria exploratória diferencial (DSC) e termogravimetria (TGA). A morfologia dos nanocompósitos foi estudada pela técnica de microscopia eletrônica de varredura (MEV). A argila, a celulose e os nanocompósitos híbridos foram caracterizados por difração de raios X (DRX), fluorescência de raios X (FRX) e espectroscopia no infravermelho (FTIR). Nos ensaios mecânicos de tração houve um aumento de 11 % na tensão máxima em tração e 15 % no módulo de Young, para o nanocompósito com argila, PPA 5 %. No ensaio de impacto Izod, o nanocompósito com argila, PPA 2 % obteve um aumento de 63 % na resistência ao impacto. Para o nanocompósito híbrido PPAC 1 % houve aumento de 8 % na tensão máxima em tração e para o nanocompósito híbrido PPAC 2 % houve aumento de 14 % na resistência ao impacto.
Resumo:
The electrical ceramic insulators industry, uses noble raw materials such as siliceous and aluminous clays of white burning, in order to provide plasticity of the mass and contribute to electrical and mechanical properties required of the product, and feldspar with the flux function In literature references the composition of the masses indicates that the clay participates in percentage between 20 and 32, and feldspar 8 to 35, these materials have significant cost. In this research was performed the total replacement of commercial clay, for white burning clay from Santa Luzia region in southern Bahia and partial replacement of feldspar by ash residue of husk conilon coffee burning, from extreme south of Bahia. The objective of replacement these raw materials is to aver its technical feasibility and call attention for the embryo pole of ceramic industry for the existing in the south and extreme south of Bahia, which has significant reserves of noble raw materials such as clay white burning, kaolin, quartz and feldspar, and generates significant volume of gray husk conilon coffee as alternate flux. Clay Santa Luzia is prima noble material whose current commercial application is the production of white roofing. The residue of coffee husk ash is discarded near of production sites and is harmful to the environment. Phase diagrams and statistic design of experiments, were used for optimization and cost savings in research. The results confirmed the expectations of obtaining electrical ceramic insulators, with white burning clay of Santa Luzia and partial replacement up to 35.4% of feldspar, by treaty residue of conilon ash coffee husk burning. The statistic design that showed best results was for formulation with percentages of: clay 26.4 to 30.4%; kaolin 14.85 to 17.1%; feldspar 12.92 to 16.96%; R2 residue 7.08 to 9.2% and Quartz 32.5 to 38.75%, relative to the total mass of the mixture. The best results indicated; 0.2 to 1.4% apparent porosity , water absorption 0.1 to 0.7%, flexural strength 35 to 45MPa , dielectric strength 35-41 kV/cm , the transverse resistivity 8x109 2.5x1010 Ω.cm and for the dielectric constant ε/ε0 7 to 10.4, specification parameters for manufacturing ceramic electrical insulators of low and medium voltage.
Resumo:
Compared to conventional composites, polymer matrix nanocomposites typically exhibit enhanced properties at a significantly lower filler volume fraction. Studies published in the literature indicate t hat the addition of nanosilicate s can increase the resistance to flame propagation in polymers. In this work, a treatment of montmorillonite (MMT) nano clay and the effect of its ad dition o n flame propagation characteristics of vinyl ester were studied. The resea rch was conducted in two stages. The first stage focused on the purification and activation of the MMT clay collected from a natural deposit to improve compatibility with the polymer matrix . Clay modification with sodium acetate was also studied to improve particle dispersion in the polymer. The second step was focused on the effect of the addition of the treated clay on nanocomposites ’ properties. Nanocomposites with clay con tents of 1, 2, 4 wt. % were processed. T he techniques for the characterization of the clay included X - ray fluorescence (XRF), X - r ay d iffraction (XRD), thermogravimetric a nalysis (TGA), d ifferential scanning c alorimetry (DSC) , s urface area (BET) and Fourier transform infrared spectroscopy (FTIR). For t he characterization of the nanocomposites , the techniques used were thermogravimetric a nalysis (TGA) , differential scanning c alorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) , scanning electron mi croscopy (SEM), transmission electron m icroscopy (TEM), and the determination of tensile strength, modulus of elasticity and resistance to flame propagation. According to the results, the purification and activation treatment with freeze - drying used in thi s work for the montmorillonite clay was efficient to promote compatibility and dispersion in the polymer matrix as evidenced by the characterization of the nanocomposite s . It was also observed that the clay modifica tion using sodium acetate did not produce any significant effect to improve compatibilization of the clay with the polymer. The addition of the treated MMT resulted in a reduction of up to 53% in the polymer flame propagation speed and did not affect the mechanical tensile strength and modulus o f elas ticity of the polymer, indicating compatibility between the clay and polymer. The effectiveness in reducing flame propagation speed peaked for nanocomposites with 2 wt. % clay, indicating that this is the optimum clay concentration for this property. T he clay treatment used in this work enables the production of vinylester matrix nanocomposites with flame - retardancy properties .
Resumo:
Due to the great challenges encountered in drilling wells, there is a need to develop fluids with appropriated properties and able to meet all the requirements of drilling operations. The physicochemical and rheological properties must be carefully controlled so that a fluid can exercise all its functions. In perforations sensitive to contact with water and "offshore", it becomes necessary the use of oil based drilling fluids, but the bentonite clay cannot be used without a previous surface modification so that their surfaces become hydrophobic. Lately, the oil companies in Brazil use imported organoclays in the preparation of oil-based drilling fluids. The study aimed to modify a calcium clay to increase the affinity of the same organic phase of oil-based drilling fluids, applying three surfactants (OCS, CTAB and UTM 150) at different concentrations. The results indicated that the surfactants UTM 150 and CTAB showed better results compared to OCS. Considering the type of surfactant and concentration as variables used in the statistical analysis, the results indicated that only the surface tension and concentration of calcium oxide in response to organophilization process showed statistically significant effects. The organophilizated clay has potential for application in oil-based drilling fluids.