971 resultados para analog digital converter
Resumo:
An improved amplifier for atmospheric fine wire resistance thermometry is described. The amplifier uses a low excitation current (50 mu A). This is shown to ensure negligible self-heating of the low mass fine wire resistance sensor, compared with measured nocturnal surface air temperature fluctuations. The system provides sufficient amplification for a +/- 50 degrees C span using a +/- 5 V dynamic range analog-to-digital converter, with a noise level of less than 0.01 degrees C. A Kelvin four-wire connection cancels the effect of long lead resistances: a 50 m length of screened cable connecting the Reading design of fine wire thermometer to the amplifier produced no measurable temperature change at 12 bit resolution.
Resumo:
The Mario Schenberg gravitational wave detector has started its commissioning phase at the Physics Institute of the University of Sao Paulo. We have collected almost 200 h of data from the instrument in order to check out its behavior and performance. We have also been developing a data acquisition system for it under a VXI System. Such a system is composed of an analog-to-digital converter and a GPS receiver for time synchronization. We have been building the software that controls and sets up the data acquisition. Here we present an overview of the Mario Schenberg detector and its data acquisition system, some results from the first commissioning run and solutions for some problems we have identified.
Resumo:
An all-in-one version of a capacitively coupled contactless conductivity detector is introduced. The absence of moving parts (potentiometers and connectors) makes it compact (6.5 cm(3)) and robust. A local oscillator, working at 1.1 MHz, was optimized to use capillaries of id from 20 to 100 lam. Low noise circuitry and a high-resolution analog-to-digital converter (ADC) (21 bits effective) grant good sensitivities for capillaries and background electrolytes currently used in capillary electrophoresis. The fixed frequency and amplitude of the signal generator is a drawback that is compensated by the steady calibration curves for conductivity. Another advantage is the possibility of determining the inner diameter of a capillary by reading the ADC when air and subsequently water flow through the capillary. The difference of ADC reading may be converted into the inner diameter by a calibration curve. This feature is granted by the 21-bit ADC, which eliminates the necessity of baseline compensation by hardware. In a typical application, the limits of detection based on the 3 sigma criterion (without baseline filtering) were 0.6, 0.4, 0.3, 0.5, 0.6, and 0.8 mu mol/L for K(+), Ba(2+), Ca(2+), Na(+), Mg(2+), and Li(+), respectively, which is comparable to other high-quality implementations of a capacitively coupled contactless conductivity detector.
Resumo:
A performance comparison between a recently proposed novel technique known as fast orthogonal frequency-division multiplexing (FOFDM) and conventional orthogonal frequency-division multiplexing (OFDM) is undertaken over unamplified, intensity-modulated, and direct-detected directly modulated laser-based optical signals. Key transceiver parameters, such as the maximum achievable transmission capacity and the digital-to-analog/analog-to-digital converter (DAC/ADC) effects are explored thoroughly. It is shown that, similarly to conventional OFDM, the least complex and bandwidth efficient FOFDM can support up to similar to 20 Gb/s over 500 m worst-case multimode fiber (MMF) links having 3 dB effective bandwidths of similar to 200 MHz X km. For compensation of the DAC/ADC roll-off, a power-loading (PL) algorithm is adopted, leading to an FOFDM system improvement of similar to 4 dB. FOFDM and conventional OFDM give similar optimum DAC/ADC parameters over 500 m worst-case MMF, while over 50 km single-mode fiber a maximum deviation of only similar to 1 dB in clipping ratio is observed due to the imperfect chromatic dispersion compensation caused by one-tap equalizers.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Synthetic-heterodyne demodulation is a useful technique for dynamic displacement and velocity detection in interferometric sensors, as it can provide an output signal that is immune to interferometric drift. With the advent of cost-effective, high-speed real-time signal-processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. In synthetic heterodyne, to obtain the actual dynamic displacement or vibration of the object under test requires knowledge of the interferometer visibility and also the argument of two Bessel functions. In this paper, a method is described for determining the former and setting the Bessel function argument to a set value, which ensures maximum sensitivity. Conventional synthetic-heterodyne demodulation requires the use of two in-phase local oscillators; however, the relative phase of these oscillators relative to the interferometric signal is unknown. It is shown that, by using two additional quadrature local oscillators, a demodulated signal can be obtained that is independent of this phase difference. The experimental interferometer is aMichelson configuration using a visible single-mode laser, whose current is sinusoidally modulated at a frequency of 20 kHz. The detected interferometer output is acquired using a 250 kHz analog-to-digital converter and processed in real time. The system is used to measure the displacement sensitivity frequency response and linearity of a piezoelectric mirror shifter over a range of 500 Hz to 10 kHz. The experimental results show good agreement with two data-obtained independent techniques: the signal coincidence and denominated n-commuted Pernick method.
Resumo:
We present a technique for online compression of ECG signals using the Golomb-Rice encoding algorithm. This is facilitated by a novel time encoding asynchronous analog-to-digital converter targeted for low-power, implantable, long-term bio-medical sensing applications. In contrast to capturing the actual signal (voltage) values the asynchronous time encoder captures and encodes the time information at which predefined changes occur in the signal thereby minimizing the sensor's energy use and the number of bits we store to represent the information by not capturing unnecessary samples. The time encoder transforms the ECG signal data to pure time information that has a geometric distribution such that the Golomb-Rice encoding algorithm can be used to further compress the data. An overall online compression rate of about 6 times is achievable without the usual computations associated with most compression methods.
Resumo:
The constant development of digital systems in radio communications demands the adaptation of the current receiving equipment to the new technologies. In this context, a new Software Defined Radio based receiver is being implemented with the aim of carrying out different experiments to analyze the propagation of signals through the atmosphere from a satellite beacon. The receiver selected for this task is the PERSEUS SDR from the Italian company Microtelecom s.r.l. It is a software defined VLF-LF-MF-HF receiver based on an outstanding direct sampling digital architecture which features a 14 bit 80 MSamples/s analog-to-digital converter, a high-performance FPGA-based digital down-converter and a high-speed 480 Mbit/s USB2.0 PC interface. The main goal is to implement the related software and adapt the new receiver to the current working environment. In this paper, SDR technology guidelines are given and PERSEUS receiver digital signal processing is presented with the most remarkable results.
Resumo:
Total Ionization Dose (TID) is traditionally measured by radiation sensitive FETs (RADFETs) that require a radiation hardened Analog-to-Digital Converter (ADC) stage. This work introduces a TID sensor based on a delay path whose propagation time is sensitive to the absorbed radiation. It presents the following advantages: it is a digital sensor able to be integrated in CMOS circuits and programmable systems such as FPGAs; it has a configurable sensitivity that allows to use this device for radiation doses ranging from very low to relatively high levels; its interface helps to integrate this sensor in a multidisciplinary sensor network; it is self-timed, hence it does not need a clock signal that can degrade its accuracy. The sensor has been prototyped in a 0.35μm technology, has an area of 0.047mm2, of which 22% is dedicated to measuring radiation, and an energy per conversion of 463pJ. Experimental irradiation tests have validated the correct response of the proposed TID sensor.
Resumo:
Esta tesis recoje un trabajo experimental centrado en profundizar sobre el conocimiento de los bloques detectores monolíticos como alternativa a los detectores segmentados para tomografía por emisión de positrones (Positron Emission Tomography, PET). El trabajo llevado a cabo incluye el desarrollo, la caracterización, la puesta a punto y la evaluación de prototipos demostradores PET utilizando bloques monolíticos de ortosilicato de lutecio ytrio dopado con cerio (Cerium-Doped Lutetium Yttrium Orthosilicate, LYSO:Ce) usando sensores compatibles con altos campos magnéticos, tanto fotodiodos de avalancha (Avalanche Photodiodes, APDs) como fotomultiplicadores de silicio (Silicon Photomultipliers, SiPMs). Los prototipos implementados con APDs se construyeron para estudiar la viabilidad de un prototipo PET de alta sensibilidad previamente simulado, denominado BrainPET. En esta memoria se describe y caracteriza la electrónica frontal integrada utilizada en estos prototipos junto con la electrónica de lectura desarrollada específicamente para los mismos. Se muestran los montajes experimentales para la obtención de las imágenes tomográficas PET y para el entrenamiento de los algoritmos de red neuronal utilizados para la estimación de las posiciones de incidencia de los fotones γ sobre la superficie de los bloques monolíticos. Con el prototipo BrainPET se obtuvieron resultados satisfactorios de resolución energética (13 % FWHM), precisión espacial de los bloques monolíticos (~ 2 mm FWHM) y resolución espacial de la imagen PET de 1,5 - 1,7 mm FWHM. Además se demostró una capacidad resolutiva en la imagen PET de ~ 2 mm al adquirir simultáneamente imágenes de fuentes radiactivas separadas a distancias conocidas. Sin embargo, con este prototipo se detectaron también dos limitaciones importantes. En primer lugar, se constató una falta de flexibilidad a la hora de trabajar con un circuito integrado de aplicación específica (Application Specific Integrated Circuit, ASIC) cuyo diseño electrónico no era propio sino comercial, unido al elevado coste que requieren las modificaciones del diseño de un ASIC con tales características. Por otra parte, la caracterización final de la electrónica integrada del BrainPET mostró una resolución temporal con amplio margen de mejora (~ 13 ns FWHM). Tomando en cuenta estas limitaciones obtenidas con los prototipos BrainPET, junto con la evolución tecnológica hacia matrices de SiPM, el conocimiento adquirido con los bloques monolíticos se trasladó a la nueva tecnología de sensores disponible, los SiPMs. A su vez se inició una nueva estrategia para la electrónica frontal, con el ASIC FlexToT, un ASIC de diseño propio basado en un esquema de medida del tiempo sobre umbral (Time over Threshold, ToT), en donde la duración del pulso de salida es proporcional a la energía depositada. Una de las características más interesantes de este esquema es la posibilidad de manejar directamente señales de pulsos digitales, en lugar de procesar la amplitud de las señales analógicas. Con esta arquitectura electrónica se sustituyen los conversores analógicos digitales (Analog to Digital Converter, ADCs) por conversores de tiempo digitales (Time to Digital Converter, TDCs), pudiendo implementar éstos de forma sencilla en matrices de puertas programmable ‘in situ’ (Field Programmable Gate Array, FPGA), reduciendo con ello el consumo y la complejidad del diseño. Se construyó un nuevo prototipo demostrador FlexToT para validar dicho ASIC para bloques monolíticos o segmentados. Se ha llevado a cabo el diseño y caracterización de la electrónica frontal necesaria para la lectura del ASIC FlexToT, evaluando su linealidad y rango dinámico, el comportamiento frente a ruido así como la no linealidad diferencial obtenida con los TDCs implementados en la FPGA. Además, la electrónica presentada en este trabajo es capaz de trabajar con altas tasas de actividad y de discriminar diferentes centelleadores para aplicaciones phoswich. El ASIC FlexToT proporciona una excelente resolución temporal en coincidencia para los eventos correspondientes con el fotopico de 511 keV (128 ps FWHM), solventando las limitaciones de resolución temporal del prototipo BrainPET. Por otra parte, la resolución energética con bloques monolíticos leidos por ASICs FlexToT proporciona una resolución energética de 15,4 % FWHM a 511 keV. Finalmente, se obtuvieron buenos resultados en la calidad de la imagen PET y en la capacidad resolutiva del demostrador FlexToT, proporcionando resoluciones espaciales en el centro del FoV en torno a 1,4 mm FWHM. ABSTRACT This thesis is focused on the development of experimental activities used to deepen the knowledge of monolithic detector blocks as an alternative to segmented detectors for Positron Emission Tomography (PET). It includes the development, characterization, setting up, running and evaluation of PET demonstrator prototypes with monolithic detector blocks of Cerium-doped Lutetium Yttrium Orthosilicate (LYSO:Ce) using magnetically compatible sensors such as Avalanche Photodiodes (APDs) and Silicon Photomultipliers (SiPMs). The prototypes implemented with APDs were constructed to validate the viability of a high-sensitivity PET prototype that had previously been simulated, denominated BrainPET. This work describes and characterizes the integrated front-end electronics used in these prototypes, as well as the electronic readout system developed especially for them. It shows the experimental set-ups to obtain the tomographic PET images and to train neural networks algorithms used for position estimation of photons impinging on the surface of monolithic blocks. Using the BrainPET prototype, satisfactory energy resolution (13 % FWHM), spatial precision of monolithic blocks (~ 2 mm FWHM) and spatial resolution of the PET image (1.5 – 1.7 mm FWHM) in the center of the Field of View (FoV) were obtained. Moreover, we proved the imaging capabilities of this demonstrator with extended sources, considering the acquisition of two simultaneous sources of 1 mm diameter placed at known distances. However, some important limitations were also detected with the BrainPET prototype. In the first place, it was confirmed that there was a lack of flexibility working with an Application Specific Integrated Circuit (ASIC) whose electronic design was not own but commercial, along with the high cost required to modify an ASIC design with such features. Furthermore, the final characterization of the BrainPET ASIC showed a timing resolution with room for improvement (~ 13 ns FWHM). Taking into consideration the limitations obtained with the BrainPET prototype, along with the technological evolution in magnetically compatible devices, the knowledge acquired with the monolithic blocks were transferred to the new technology available, the SiPMs. Moreover, we opted for a new strategy in the front-end electronics, the FlexToT ASIC, an own design ASIC based on a Time over Threshold (ToT) scheme. One of the most interesting features underlying a ToT architecture is the encoding of the analog input signal amplitude information into the duration of the output signals, delivering directly digital pulses. The electronic architecture helps substitute the Analog to Digital Converters (ADCs) for Time to Digital Converters (TDCs), and they are easily implemented in Field Programmable Gate Arrays (FPGA), reducing the consumption and the complexity of the design. A new prototype demonstrator based on SiPMs was implemented to validate the FlexToT ASIC for monolithic or segmented blocks. The design and characterization of the necessary front-end electronic to read-out the signals from the ASIC was carried out by evaluating its linearity and dynamic range, its performance with an external noise signal, as well as the differential nonlinearity obtained with the TDCs implemented in the FPGA. Furthermore, the electronic presented in this work is capable of working at high count rates and discriminates different phoswich scintillators. The FlexToT ASIC provides an excellent coincidence time resolution for events that correspond to 511 keV photopeak (128 ps FWHM), resolving the limitations of the poor timing resolution of the BrainPET prototype. Furthermore, the energy resolution with monolithic blocks read by FlexToT ASICs provides an energy resolution of 15.4 % FWHM at 511 keV. Finally, good results were obtained in the quality of the PET image and the resolving power of the FlexToT demonstrator, providing spatial resolutions in the centre of the FoV at about 1.4 mm FWHM.
Resumo:
En el mundo actual las aplicaciones basadas en sistemas biométricos, es decir, aquellas que miden las señales eléctricas de nuestro organismo, están creciendo a un gran ritmo. Todos estos sistemas incorporan sensores biomédicos, que ayudan a los usuarios a controlar mejor diferentes aspectos de la rutina diaria, como podría ser llevar un seguimiento detallado de una rutina deportiva, o de la calidad de los alimentos que ingerimos. Entre estos sistemas biométricos, los que se basan en la interpretación de las señales cerebrales, mediante ensayos de electroencefalografía o EEG están cogiendo cada vez más fuerza para el futuro, aunque están todavía en una situación bastante incipiente, debido a la elevada complejidad del cerebro humano, muy desconocido para los científicos hasta el siglo XXI. Por estas razones, los dispositivos que utilizan la interfaz cerebro-máquina, también conocida como BCI (Brain Computer Interface), están cogiendo cada vez más popularidad. El funcionamiento de un sistema BCI consiste en la captación de las ondas cerebrales de un sujeto para después procesarlas e intentar obtener una representación de una acción o de un pensamiento del individuo. Estos pensamientos, correctamente interpretados, son posteriormente usados para llevar a cabo una acción. Ejemplos de aplicación de sistemas BCI podrían ser mover el motor de una silla de ruedas eléctrica cuando el sujeto realice, por ejemplo, la acción de cerrar un puño, o abrir la cerradura de tu propia casa usando un patrón cerebral propio. Los sistemas de procesamiento de datos están evolucionando muy rápido con el paso del tiempo. Los principales motivos son la alta velocidad de procesamiento y el bajo consumo energético de las FPGAs (Field Programmable Gate Array). Además, las FPGAs cuentan con una arquitectura reconfigurable, lo que las hace más versátiles y potentes que otras unidades de procesamiento como las CPUs o las GPUs.En el CEI (Centro de Electrónica Industrial), donde se lleva a cabo este TFG, se dispone de experiencia en el diseño de sistemas reconfigurables en FPGAs. Este TFG es el segundo de una línea de proyectos en la cual se busca obtener un sistema capaz de procesar correctamente señales cerebrales, para llegar a un patrón común que nos permita actuar en consecuencia. Más concretamente, se busca detectar cuando una persona está quedándose dormida a través de la captación de unas ondas cerebrales, conocidas como ondas alfa, cuya frecuencia está acotada entre los 8 y los 13 Hz. Estas ondas, que aparecen cuando cerramos los ojos y dejamos la mente en blanco, representan un estado de relajación mental. Por tanto, este proyecto comienza como inicio de un sistema global de BCI, el cual servirá como primera toma de contacto con el procesamiento de las ondas cerebrales, para el posterior uso de hardware reconfigurable sobre el cual se implementarán los algoritmos evolutivos. Por ello se vuelve necesario desarrollar un sistema de procesamiento de datos en una FPGA. Estos datos se procesan siguiendo la metodología de procesamiento digital de señales, y en este caso se realiza un análisis de la frecuencia utilizando la transformada rápida de Fourier, o FFT. Una vez desarrollado el sistema de procesamiento de los datos, se integra con otro sistema que se encarga de captar los datos recogidos por un ADC (Analog to Digital Converter), conocido como ADS1299. Este ADC está especialmente diseñado para captar potenciales del cerebro humano. De esta forma, el sistema final capta los datos mediante el ADS1299, y los envía a la FPGA que se encarga de procesarlos. La interpretación es realizada por los usuarios que analizan posteriormente los datos procesados. Para el desarrollo del sistema de procesamiento de los datos, se dispone primariamente de dos plataformas de estudio, a partir de las cuales se captarán los datos para después realizar el procesamiento: 1. La primera consiste en una herramienta comercial desarrollada y distribuida por OpenBCI, proyecto que se dedica a la venta de hardware para la realización de EEG, así como otros ensayos. Esta herramienta está formada por un microprocesador, un módulo de memoria SD para el almacenamiento de datos, y un módulo de comunicación inalámbrica que transmite los datos por Bluetooth. Además cuenta con el mencionado ADC ADS1299. Esta plataforma ofrece una interfaz gráfica que sirve para realizar la investigación previa al diseño del sistema de procesamiento, al permitir tener una primera toma de contacto con el sistema. 2. La segunda plataforma consiste en un kit de evaluación para el ADS1299, desde la cual se pueden acceder a los diferentes puertos de control a través de los pines de comunicación del ADC. Esta plataforma se conectará con la FPGA en el sistema integrado. Para entender cómo funcionan las ondas más simples del cerebro, así como saber cuáles son los requisitos mínimos en el análisis de ondas EEG se realizaron diferentes consultas con el Dr Ceferino Maestu, neurofisiólogo del Centro de Tecnología Biomédica (CTB) de la UPM. Él se encargó de introducirnos en los distintos procedimientos en el análisis de ondas en electroencefalogramas, así como la forma en que se deben de colocar los electrodos en el cráneo. Para terminar con la investigación previa, se realiza en MATLAB un primer modelo de procesamiento de los datos. Una característica muy importante de las ondas cerebrales es la aleatoriedad de las mismas, de forma que el análisis en el dominio del tiempo se vuelve muy complejo. Por ello, el paso más importante en el procesamiento de los datos es el paso del dominio temporal al dominio de la frecuencia, mediante la aplicación de la transformada rápida de Fourier o FFT (Fast Fourier Transform), donde se pueden analizar con mayor precisión los datos recogidos. El modelo desarrollado en MATLAB se utiliza para obtener los primeros resultados del sistema de procesamiento, el cual sigue los siguientes pasos. 1. Se captan los datos desde los electrodos y se escriben en una tabla de datos. 2. Se leen los datos de la tabla. 3. Se elige el tamaño temporal de la muestra a procesar. 4. Se aplica una ventana para evitar las discontinuidades al principio y al final del bloque analizado. 5. Se completa la muestra a convertir con con zero-padding en el dominio del tiempo. 6. Se aplica la FFT al bloque analizado con ventana y zero-padding. 7. Los resultados se llevan a una gráfica para ser analizados. Llegados a este punto, se observa que la captación de ondas alfas resulta muy viable. Aunque es cierto que se presentan ciertos problemas a la hora de interpretar los datos debido a la baja resolución temporal de la plataforma de OpenBCI, este es un problema que se soluciona en el modelo desarrollado, al permitir el kit de evaluación (sistema de captación de datos) actuar sobre la velocidad de captación de los datos, es decir la frecuencia de muestreo, lo que afectará directamente a esta precisión. Una vez llevado a cabo el primer procesamiento y su posterior análisis de los resultados obtenidos, se procede a realizar un modelo en Hardware que siga los mismos pasos que el desarrollado en MATLAB, en la medida que esto sea útil y viable. Para ello se utiliza el programa XPS (Xilinx Platform Studio) contenido en la herramienta EDK (Embedded Development Kit), que nos permite diseñar un sistema embebido. Este sistema cuenta con: Un microprocesador de tipo soft-core llamado MicroBlaze, que se encarga de gestionar y controlar todo el sistema; Un bloque FFT que se encarga de realizar la transformada rápida Fourier; Cuatro bloques de memoria BRAM, donde se almacenan los datos de entrada y salida del bloque FFT y un multiplicador para aplicar la ventana a los datos de entrada al bloque FFT; Un bus PLB, que consiste en un bus de control que se encarga de comunicar el MicroBlaze con los diferentes elementos del sistema. Tras el diseño Hardware se procede al diseño Software utilizando la herramienta SDK(Software Development Kit).También en esta etapa se integra el sistema de captación de datos, el cual se controla mayoritariamente desde el MicroBlaze. Por tanto, desde este entorno se programa el MicroBlaze para gestionar el Hardware que se ha generado. A través del Software se gestiona la comunicación entre ambos sistemas, el de captación y el de procesamiento de los datos. También se realiza la carga de los datos de la ventana a aplicar en la memoria correspondiente. En las primeras etapas de desarrollo del sistema, se comienza con el testeo del bloque FFT, para poder comprobar el funcionamiento del mismo en Hardware. Para este primer ensayo, se carga en la BRAM los datos de entrada al bloque FFT y en otra BRAM los datos de la ventana aplicada. Los datos procesados saldrán a dos BRAM, una para almacenar los valores reales de la transformada y otra para los imaginarios. Tras comprobar el correcto funcionamiento del bloque FFT, se integra junto al sistema de adquisición de datos. Posteriormente se procede a realizar un ensayo de EEG real, para captar ondas alfa. Por otro lado, y para validar el uso de las FPGAs como unidades ideales de procesamiento, se realiza una medición del tiempo que tarda el bloque FFT en realizar la transformada. Este tiempo se compara con el tiempo que tarda MATLAB en realizar la misma transformada a los mismos datos. Esto significa que el sistema desarrollado en Hardware realiza la transformada rápida de Fourier 27 veces más rápido que lo que tarda MATLAB, por lo que se puede ver aquí la gran ventaja competitiva del Hardware en lo que a tiempos de ejecución se refiere. En lo que al aspecto didáctico se refiere, este TFG engloba diferentes campos. En el campo de la electrónica: Se han mejorado los conocimientos en MATLAB, así como diferentes herramientas que ofrece como FDATool (Filter Design Analysis Tool). Se han adquirido conocimientos de técnicas de procesado de señal, y en particular, de análisis espectral. Se han mejorado los conocimientos en VHDL, así como su uso en el entorno ISE de Xilinx. Se han reforzado los conocimientos en C mediante la programación del MicroBlaze para el control del sistema. Se ha aprendido a crear sistemas embebidos usando el entorno de desarrollo de Xilinx usando la herramienta EDK (Embedded Development Kit). En el campo de la neurología, se ha aprendido a realizar ensayos EEG, así como a analizar e interpretar los resultados mostrados en el mismo. En cuanto al impacto social, los sistemas BCI afectan a muchos sectores, donde destaca el volumen de personas con discapacidades físicas, para los cuales, este sistema implica una oportunidad de aumentar su autonomía en el día a día. También otro sector importante es el sector de la investigación médica, donde los sistemas BCIs son aplicables en muchas aplicaciones como, por ejemplo, la detección y estudio de enfermedades cognitivas.
Resumo:
Development of a Sensorimotor Algorithm Able to Deal with Unforeseen Pushes and Its Implementation Based on VHDL is the title of my thesis which concludes my Bachelor Degree in the Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación of the Universidad Politécnica de Madrid. It encloses the overall work I did in the Neurorobotics Research Laboratory from the Beuth Hochschule für Technik Berlin during my ERASMUS year in 2015. This thesis is focused on the field of robotics, specifically an electronic circuit called Cognitive Sensorimotor Loop (CSL) and its control algorithm based on VHDL hardware description language. The reason that makes the CSL special resides in its ability to operate a motor both as a sensor and an actuator. This way, it is possible to achieve a balanced position in any of the robot joints (e.g. the robot manages to stand) without needing any conventional sensor. In other words, the back electromotive force (EMF) induced by the motor coils is measured and the control algorithm responds depending on its magnitude. The CSL circuit contains mainly an analog-to-digital converter (ADC) and a driver. The ADC consists on a delta-sigma modulation which generates a series of bits with a certain percentage of 1's and 0's, proportional to the back EMF. The control algorithm, running in a FPGA, processes the bit frame and outputs a signal for the driver. This driver, which has an H bridge topology, gives the motor the ability to rotate in both directions while it's supplied with the power needed. The objective of this thesis is to document the experiments and overall work done on push ignoring contractive sensorimotor algorithms, meaning sensorimotor algorithms that ignore large magnitude forces (compared to gravity) applied in a short time interval on a pendulum system. This main objective is divided in two sub-objectives: (1) developing a system based on parameterized thresholds and (2) developing a system based on a push bypassing filter. System (1) contains a module that outputs a signal which blocks the main Sensorimotor algorithm when a push is detected. This module has several different parameters as inputs e.g. the back EMF increment to consider a force as a push or the time interval between samples. System (2) consists on a low-pass Infinite Impulse Response digital filter. It cuts any frequency considered faster than a certain push oscillation. This filter required an intensive study on how to implement some functions and data types (fixed or floating point data) not supported by standard VHDL packages. Once this was achieved, the next challenge was to simplify the solution as much as possible, without using non-official user made packages. Both systems behaved with a series of interesting advantages and disadvantages for the elaboration of the document. Stability, reaction time, simplicity or computational load are one of the many factors to be studied in the designed systems. RESUMEN. Development of a Sensorimotor Algorithm Able to Deal with Unforeseen Pushes and Its Implementation Based on VHDL es un Proyecto de Fin de Grado (PFG) que concluye mis estudios en la Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación de la Universidad Politécnica de Madrid. En él se documenta el trabajo de investigación que realicé en el Neurorobotics Research Laboratory de la Beuth Hochschule für Technik Berlin durante el año 2015 mediante el programa de intercambio ERASMUS. Este PFG se centra en el campo de la robótica y en concreto en un circuito electrónico llamado Cognitive Sensorimotor Loop (CSL) y su algoritmo de control basado en lenguaje de modelado hardware VHDL. La particularidad del CSL reside en que se consigue que un motor haga las veces tanto de sensor como de actuador. De esta manera es posible que las articulaciones de un robot alcancen una posición de equilibrio (p.ej. el robot se coloca erguido) sin la necesidad de sensores en el sentido estricto de la palabra. Es decir, se mide la propia fuerza electromotriz (FEM) inducida sobre el motor y el algoritmo responde de acuerdo a su magnitud. El circuito CSL se compone de un convertidor analógico-digital (ADC) y un driver. El ADC consiste en un modulador sigma-delta, que genera una serie de bits con un porcentaje de 1's y 0's determinado, en proporción a la magnitud de la FEM inducida. El algoritmo de control, que se ejecuta en una FPGA, procesa esta cadena de bits y genera una señal para el driver. El driver, que posee una topología en puente H, provee al motor de la potencia necesaria y le otorga la capacidad de rotar en cualquiera de las dos direcciones. El objetivo de este PFG es documentar los experimentos y en general el trabajo realizado en algoritmos Sensorimotor que puedan ignorar fuerzas de gran magnitud (en comparación con la gravedad) y aplicadas en una corta ventana de tiempo. En otras palabras, ignorar empujones conservando el comportamiento original frente a la gravedad. Para ello se han desarrollado dos sistemas: uno basado en umbrales parametrizados (1) y otro basado en un filtro de corte ajustable (2). El sistema (1) contiene un módulo que, en el caso de detectar un empujón, genera una señal que bloquea el algoritmo Sensorimotor. Este módulo recibe diferentes parámetros como el incremento necesario de la FEM para que se considere un empujón o la ventana de tiempo para que se considere la existencia de un empujón. El sistema (2) consiste en un filtro digital paso-bajo de respuesta infinita que corta cualquier variación que considere un empujón. Para crear este filtro se requirió un estudio sobre como implementar ciertas funciones y tipos de datos (coma fija o flotante) no soportados por las librerías básicas de VHDL. Tras esto, el objetivo fue simplificar al máximo la solución del problema, sin utilizar paquetes de librerías añadidos. En ambos sistemas aparecen una serie de ventajas e inconvenientes de interés para el documento. La estabilidad, el tiempo de reacción, la simplicidad o la carga computacional son algunas de las muchos factores a estudiar en los sistemas diseñados. Para concluir, también han sido documentadas algunas incorporaciones a los sistemas: una interfaz visual en VGA, un módulo que compensa el offset del ADC o la implementación de una batería de faders MIDI entre otras.
Resumo:
We present a low power gas sensor system on CMOS platform consisting of micromachined polysilicon microheater, temperature controller circuit, resistance readout circuit and SnO2 transducer film. The design criteria for different building blocks of the system is elaborated The microheaters are optimized for temperature uniformity as well as static and dynamic response. The electrical equivalent model for the microheater is derived by extracting thermal and mechanical poles through extensive laser doppler vibrometer measurements. The temperature controller and readout circuit are realized on 130nm CMOS technology The temperature controller re-uses the heater as a temperature sensor and controls the duty cycle of the waveform driving the gate of the power MOSFET which supplies heater current. The readout circuit, with subthreshold operation of the MOSFETs, is based oil resistance to time period conversion followed by frequency to digital converter Subthreshold operatin of MOSFETs coupled with sub-ranging technique, achieves ultra low power consumption with more than five orders of magnitude dynamic range RF sputtered SnO2 film is optimized for its microstructure to achive high sensitivity to sense LPG gas.
Resumo:
Carbon nanotubes dispersed in polymer matrix have been aligned in the form of fibers and interconnects and cured electrically and by UV light. Conductivity and effective semiconductor tunneling against reverse to forward bias field have been designed to have differentiable current-voltage response of each of the fiber/channel. The current-voltage response is a function of the strain applied to the fibers along axial direction. Biaxial and shear strains are correlated by differentiating signals from the aligned fibers/channels. Using a small doping of magnetic nanoparticles in these composite fibers, magneto-resistance properties are realized which are strong enough to use the resulting magnetostriction as a state variable for signal processing and computing. Various basic analog signal processing tasks such as addition, convolution and filtering etc. can be performed. These preliminary study shows promising application of the concept in combined analog-digital computation in carbon nanotube based fibers. Various dynamic effects such as relaxation, electric field dependent nonlinearities and hysteresis on the output signals are studied using experimental data and analytical model.
Resumo:
While keeping the technological evolution and commercialization of FinFET technology in mind, this paper discloses a novel concept that enables area-scaled or vertical tunneling in Fin-based technologies. The concept provides a roadmap for beyond FinFET technologies, while enjoying the advantages of FinFET-like structure without demanding technological abruptness from the existing FinFET technology nodes to beyond FinFET nodes. The proposed device at 10-nm gate length, when compared with the conventional vertical tunneling FET or planar area-scaled device, offers 100% improvement in the ON-current, 15x reduction in the OFF-current, 3x increase in the transconductance, 30% improvement in the output resistance, 55% improvement in the unity gain frequency, and more importantly 6x reduction in the footprint area for a given drive capability. Furthermore, the proposed device brings the average and minimum subthreshold slope down to 40 and 11 mV/decade at 10-nm gate length. This gives a path for beyond FinFET system-on-chip applications, while enjoying the analog, digital, and RF performance improvements.