171 resultados para Unreduced-acetaldehyde
Resumo:
Very large molecular systems can be calculated with the so called CNDOL approximate Hamiltonians that have been developed by avoiding oversimplifications and only using a priori parameters and formulas from the simpler NDO methods. A new diagonal monoelectronic term named CNDOL/21 shows great consistency and easier SCF convergence when used together with an appropriate function for charge repulsion energies that is derived from traditional formulas. It is possible to obtain a priori molecular orbitals and electron excitation properties after the configuration interaction of single excited determinants with reliability, maintaining interpretative possibilities even being a simplified Hamiltonian. Tests with some unequivocal gas phase maxima of simple molecules (benzene, furfural, acetaldehyde, hexyl alcohol, methyl amine, 2,5 dimethyl 2,4 hexadiene, and ethyl sulfide) ratify the general quality of this approach in comparison with other methods. The calculation of large systems as porphine in gas phase and a model of the complete retinal binding pocket in rhodopsin with 622 basis functions on 280 atoms at the quantum mechanical level show reliability leading to a resulting first allowed transition in 483 nm, very similar to the known experimental value of 500 nm of "dark state." In this very important case, our model gives a central role in this excitation to a charge transfer from the neighboring Glu(-) counterion to the retinaldehyde polyene chain. Tests with gas phase maxima of some important molecules corroborate the reliability of CNDOL/2 Hamiltonians.
Resumo:
The presence of low carbonyl compounds (C1-C4) and glutaraldehyde was observed in 14 work-locations in São Paulo city, Brazil, during January to July 1997 period. The quantification of other carbonyls was not possible due to a sampling artifact caused probably by undesirable reactions between the ambient ozone and the organic substract of C18 cartridge used to collect carbonyls. High indoor concentrations, compared to outdoor levels, were observed for all compounds. Formaldehyde was the most abundant species (29 ppb) followed by acetone and acetaldehyde (25 and 17 ppb) with a small contribution of propanal, crotonaldehyde and C4 isomers (0.7 to 1.5 ppb) when related to the total indoor carbonyls level. Glutaraldehyde was observed only in two different occupational locations in a hospital at high concentrations (121 ppb). In general, high individual carbonyl levels as well as total carbonyls levels found in several locations indicated an unpropitious air quality for the occupants of these non-industrial sites.
Resumo:
It has been carried out an investigation of ethanol electro-oxidation on Ti/IrO2 electrodes. The experimental results show a high selectivity towards acetaldehyde formation thus, offering potential advantages in cost and availability of raw material. It has been observed that the electrode is partially blocked by a film formed after the oxidation of the starting material which can be removed by pulse technique between RDO and RDH onset. The mechanism and the selectivity of the product formed is presented.
Resumo:
The conversion of glycerol in supercritical water (SCW) was studied at 510-550 °C and a pressure of 350 bars using both a bed of inert and non-porous ZrO2 particles (hydrothermal experiments), and a bed of a 1% Ru/ZrO2 catalyst. Experiments were conducted with a glycerol concentration of 5 wt% in a continuous isothermal fixed-bed reactor at a residence time between 2 and 10 s. Hydrothermolysis of glycerol formed water-soluble products such as acetaldehyde, acetic acid, hydroxyacetone and acrolein, and gases like H2, CO and CO2. The catalyst enhanced the formation of acetic acid, inhibited the formation of acrolein, and promoted gasification of the glycerol decomposition products. Hydrogen and carbon oxides were the main gases produced in the catalytic experiments, with minor amounts of methane and ethylene. Complete glycerol conversion was achieved at a residence time of 8.5 s at 510 °C, and at around 5 s at 550 °C with the 1 wt% Ru/ZrO2 catalyst. The catalyst was not active enough to achieve complete gasification since high yields of primary products like acetic acid and acetaldehyde were still present. Carbon balances were between 80 and 60% in the catalytic experiments, decreasing continuously as the residence time was increased. This was attributed partially to the formation of methanol and acetaldehyde, which were not recovered and analyzed efficiently in our set-up, but also to the formation of carbon deposits. Carbon deposition was not observed on the catalyst particles but on the surface of the inert zirconia particles, especially at high residence time. This was related to the higher concentration of acetic acid and other acidic species in the catalytic experiments, which may polymerize to form tar-like carbon precursors. Because of carbon deposition, hydrogen yields were significantly lower than expected; for instance at 550 °C the hydrogen yield potential was only 50% of the stoichiometric value.
Resumo:
A square wave voltammetric method is described for the determination of acetaldehyde using the derivatization reaction with hydrazine sulphate, based on the reduction of hydrazone generated as a product that exhibits a single well-defined peak at -1.19V in acetate buffer at pH 5. Calibration graphs were obtained from 1.0 x 10-6 mol L-1 to 10 x 10-6 mol L-1 of acetaldehyde, using a reaction time of 8 min and a hidrazine concentration of 0.02 mol L-1. The detection limit was 2.38 x 10-7 mol L-1. The method was applied satisfactorily to the determination of total aldehyde in fuel ethanol samples without any pre-treatment.
Resumo:
A new triterpene, 3beta,6beta,21beta-trihydroxyolean-12-ene and a new iridoid, 8alpha-methyl-8beta-hydroxy-6beta-(3',4'-dimethoxy)benzoyloxy-1 alpha,3alpha-dimethoxy-octahydro-cyclopenta[c]pyran were isolated from the trunk bark of a specimen of Tabebuia heptaphylla (Bignoniaceae) collected in the "Pantanal" of Mato Grosso do Sul, Brazil. Twelve known compounds were also obtained in this work, comprising four iridoids, 6-O-p-hydroxybenzoylajugol, 6-O-p-methoxybenzoylajugol, 6-O-3",4"-dimethoxybenzoylajugol, 8alpha-methyl-8beta-hydroxy-6beta-(4'-hydroxy)benzoyloxy-1alpha,3 alpha-dimethoxy-octahydro-cyclopenta[c]pyran, a cyclopentene dialdehyde, 2-formyl-5-(3',4'-dimethoxybenzoyloxy)-3-methyl-2-cyclopentene-1-acetaldehyde, a phenylethanoid glycoside, verbascoside and three benzoic acid derivatives, p-hydroxybenzoic, p-methoxybenzoic and 3,4-dimethoxybenzoic acids, in addition to squalene, sitostenone and sitosterol. The antioxidant properties of the isolated compounds were also evaluated in this work.
Resumo:
Studies on identification of compounds that make up the aroma and flavor in wines involve research evaluating mainly the influence of terpenes, esters, lactones and alcohols upon these sensory characteristics. However, carbonylic compounds (CC) play an important role concerning the substances that impact aroma to these drinks. Their origin is reported to be linked to the grape's chemical composition, must fermentation or micro-oxidation occurring during storage in barrels. Some CCs, like E-ionone, E-damascenone, siryngaldehyde, can contribute a pleasant aroma and improve the wine quality whereas others are responsible for unpleasant characteristics (acetaldehyde, furfural, 5-hydroxy-methyl furfural, diacetil, E-non-2-enal, etc). A fraction of CCs present is associated with bisulfite ions in the form of hydroxyalkylsulfonic acids. Some of them are stable and play an important role in determining wine quality. The reaction involving the formation of this aduct commonly occurs with CCs of low molar mass, such as formaldehyde and acetaldehyde. The reaction involving CCs with more than three carbon atoms demands further studies.
Resumo:
An air quality evaluation of indoor environments with focus on lower carbonyls was carried out in 50 public places using TO-11A methodology. Formaldehyde levels (ranging from 12.5 to 1034 mg m-3) were above the threshold limit in 49 of 50 analyzed samples while acetaldehyde (ranging from 5.2 to 840 mg m-3) and acetone (ranging from 5.5 to 4839 mg m-3) were respectively bellow the limits of OSHA and NIOSH in all samples. However all samples were bellow the threshold limits suggested by the Brazilian legislation - NR-15. A correlation study between the carbonyls and temperature and humidity was also done.
Resumo:
One hundred fifteen cachaça samples derived from distillation in copper stills (73) or in stainless steels (42) were analyzed for thirty five itens by chromatography and inductively coupled plasma optical emission spectrometry. The analytical data were treated through Factor Analysis (FA), Partial Least Square Discriminant Analysis (PLS-DA) and Quadratic Discriminant Analysis (QDA). The FA explained 66.0% of the database variance. PLS-DA showed that it is possible to distinguish between the two groups of cachaças with 52.8% of the database variance. QDA was used to build up a classification model using acetaldehyde, ethyl carbamate, isobutyl alcohol, benzaldehyde, acetic acid and formaldehyde as chemical descriptors. The model presented 91.7% of accuracy on predicting the apparatus in which unknown samples were distilled.
Resumo:
This work aimed to quantify some organic compounds in "cachaças" (sugar cane spirit). The ethyl alcohol was quantified by densimetry, after distillation. The acetic acid, methyl alcohol, n-propyl alcohol, n-butyl alcohol, isobutyl alcohol, isoamyl alcohol (mixture of 2-methyl-butyl and 3-methyl-butyl), ethyl acetate and acetaldehyde were determined by gas chromatography; and the furfural, 5-hydroxy-methylfurfural and acrolein by high efficiency liquid chromatography. From the 30 samples analyzed, 63.3% showed non-conformity with national legislation regarding at least one of the analyzed components.
Resumo:
La-incorporated SBA-15 mesopourous molecular sieves (LaSBA-15) were directly synthesized with aim to convert ethanol to ethylene. The samples were characterized by XRD, XRF, nitrogen sorption and acidity, by thermodesorption of n-buthylamine. The results have indicated that all the samples have showed high ordered mesostructure with a large average pore size, and that the lanthanum incorporation has caused an increase in the acidity of the SBA-15. The LaSBA-15 samples have improved, with low deactivation rate, the conversion of the ethanol to water, ether, acetaldehyde and ethylene. In addition, they have increased the ethylene selectivity.
Resumo:
The volatile fraction of sugar cane spirits plays a key role in the quality and acceptance of these beverages. The composition of this fraction is dependent on the way sugar cane collection, fermentation, distillation and aging are carried out. The materials used in these processes strongly influence chemical composition. Acetic acid, acetaldehyde, ethyl acetate, ethanol, 2.3-butanedione, n-propanol, 3-methyl-buthanol and isobuthanol were the major volatiles in spirits. Dimethyl sulfide and n-propanol impaired beverage flavor. Ethyl octanoate, 1.1-diethoxy-ethane, 2-phenylethanol and 3-methyl-butanol were important aroma contributors. Ageing allows the extraction of flavor-active components (e.g., phenolic compounds) from wood.
Resumo:
This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N,4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family.
Resumo:
The partial oxidation of ethanol on γ-Al2O3, CeO2, ZrO2 and Ce xZr1-xO2 supported rhodium catalysts was investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The catalysts were characterized by temperature-programmed reduction (TPR) and cyclohexane dehydrogenation. DRIFTS studies on the partial oxidation of ethanol showed that ethanol is adsorbed dissociatively, through O-H bond breaking, with the formation of ethoxy species, followed by successive dehydrogenation to acetaldehyde and acetyl species. Further oxidation to acetate and carbonate species lead to the formation of CO, CH4 and H2 by decomposition. The presence of CeO2 in the catalysts favored the oxidation steps due to its oxygen storage capacity.
Resumo:
The electrochemical oxidation on platinum and platinum rhodium bimetallic electrodes was studied by Differential Electrochemical Mass Spectrometry for several ethanol concentrations in solution. It is found that increasing the ethanol concentration the production of the partially oxidized products (acetaldehyde) increases as the concentration increases. On the other hand, addition of 25% at. of rhodium increases the full oxidation to CO2. Another interesting result observed is a correlation between the intensity of the dehydrogenations peak at 0.3 V vs. RHE and the CO2 yield for the different ethanol concentration studied.