785 resultados para Teaching-learning research
Resumo:
This inquiry reveals the crucial guidance of teachers toward surveying the capacity and needs of students, the formation of ideas, acting upon ideas, fostering connections, seeing potential, making judgments, and arranging conditions. Each aesthetic trace causes me to wonder how teachers learn to create experiences that foster student participation in the world aesthetically. The following considerations surface: • Given the emphasis in schools on outcomes and results, how do we encourage teachers to focus on acts of mind instead of end products in their work with students? • Given the orientations toward technical rationality, to fixed sequence, how do we help teachers experience fluid, purposeful learning adventures with students in which the imagi¬nation is given room to play? • Given the tendency to conceive of planning in teaching as the deciding of everything in advance, how do we help teachers and students become attuned to making good judgments derived from within learning experiences? • How do we help teachers build dialogical multivoiced conversations instead of monolithic curriculum? • What do we do to recover the pleasure dwelling in subject matter? How do we get teachers and students to engage thoughtfully in meaningful learning as opposed to covering curriculum7 • A capacity to attend sensitively, to perceive the complexity of relationships coming together in any teaching/learning experience seems critical. How do we help teachers and students attend to the unity of a learning experience and the play of meanings that arises from such undergoing and doing? The traces, patterns, and texture evidenced locate tremendous hope and wondrous possibilities alive within aesthetic teaching/learning encounters. It is such aliveness I encountered in the grade 4 art classroom that opened this account and continues to compel my attention. Possibilities for teaching, learning, and teacher education emerge. I am convinced they are most worthy of continued pursuit.
Resumo:
Proceedings of the Advances in Teaching & Learning Day Regional Conference held at The University of Texas Health Science Center at Houston in 2004.
Resumo:
Proceedings of the Advances in Teaching & Learning Day Regional Conference held at The University of Texas Health Science Center at Houston in 2003.
Resumo:
Proceedings of the Advances in Teaching & Learning Day Regional Conference held at The University of Texas Health Science Center at Houston in 2005.
Resumo:
Proceedings of the Advances in Teaching & Learning Day Regional Conference held at The University of Texas Health Science Center at Houston in 2006.
Resumo:
Nowadays, computer simulators are becoming basic tools for education and training in many engineering fields. In the nuclear industry, the role of simulation for training of operators of nuclear power plants is also recognized of the utmost relevance. As an example, the International Atomic Energy Agency sponsors the development of nuclear reactor simulators for education, and arranges the supply of such simulation programs. Aware of this, in 2008 Gas Natural Fenosa, a Spanish gas and electric utility that owns and operate nuclear power plants and promotes university education in the nuclear technology field, provided the Department of Nuclear Engineering of Universidad Politécnica de Madrid with the Interactive Graphic Simulator (IGS) of “José Cabrera” (Zorita) nuclear power plant, an industrial facility whose commercial operation ceased definitively in April 2006. It is a state-of-the-art full-scope real-time simulator that was used for training and qualification of the operators of the plant control room, as well as to understand and analyses the plant dynamics, and to develop, qualify and validate its emergency operating procedures.
Resumo:
The methodological approach a teacher uses in the competence teaching-learning process determines the way students learn. Knowledge can be acquired from a series of perspectives, mainly: “know-what” (concept), where facts and descriptions of (natural or social) phenomena are pursued; “know-how” (procedure), where methods and procedures for their application are described; and “know-why” (competence), where general principles and laws that explain both the facts and their applications are sought. As all the three cases are interconnected, the boundaries between them are not fully clear and their application uses shared elements. In any case, the depth of student’s acquired competences will be directly affected by the teaching-learning perspective, traditionally aiming to a “know-why” approach for full competence acquisition. In this work, we discuss a suitable teaching-learning methodology for evaluating whether a “know-how”, “know-what” or combined approach seems better for enhancing competence learning in students. We exemplify the method using a selection of formative activities from the Physical Chemistry area in the Grades of Chemistry and Chemical Engineering.
Resumo:
"Grant R117G10037"--T.p. verso.
Resumo:
Mode of access: Internet.
Resumo:
At head of title: Department of Science and Art of the Committee of Council of Education.