999 resultados para Ta2O5 films
Resumo:
Flexible paper-like ZnO nanowire films are fabricated and the effect of L-lysine passivation of the nanowire surfaces on improving the UV photoresponse is studied. We prepare three types of nanowires with different defect contents, and find that the L-lysine treatment can suppress the oxygen-vacancy-related photoluminescence as well as enhance the UV photoconduction. The nanowires with fewer defects gain larger enhancement of UV photoconduction after L-lysine treatment. Reproducible UV photoresponse of the devices in humid air is obtained due to L-lysine surface passivation, ruling out the influence of water molecules in degrading the UV photocurrent.
Resumo:
The structural, optical, and gas-sensing properties of spray pyrolysis deposited Cu doped ZnO thin films were investigated. Gas response of the undoped and doped films to N02 (oxidizing) gas shows an increase and decrease in resistance, respectively, indicating p-type conduction in doped samples. The UV-Vis spectra of the films show decrease in the bandgap with increasing Cu concentration in ZnO. The observed p-type conductivity is attributed to the holes generated by incorporated Cu atoms on Zn sites in ZnO thin films. The X-ray diffraction spectra showed that samples are polycrystalline with the hexagonal wurtzite structure and increasing the concentration of Cu caused a decrease in the intensity of the dominant (002) peak. The surface morphology of films was studied by scanning electron microscopy and the presence of Cu was also confirmed by X-ray photoelectron spectroscopy. Seebeck effect measurements were utilized to confirm the p-type conduction of Cu doped ZnO thin films. Copyright © 2009 American Scientific Publishers All rights reserved.
Resumo:
Thin solid films were extensively used in the making of solar cells, cutting tools, magnetic recording devices, etc. As a result, the accurate measurement of mechanical properties of the thin films, such as hardness and elastic modulus, was required. The thickness of thin films normally varies from tens of nanometers to several micrometers. It is thus challenging to measure their mechanical properties. In this study, a nanoscratch method was proposed for hardness measurement. A three-dimensional finite element method (3-D FEM) model was developed to validate the nanoscratch method and to understand the substrate effect during nanoscratch. Nanoindentation was also used for comparison. The nanoscratch method was demonstrated to be valuable for measuring hardness of thin solid films.
Resumo:
In this paper, we fabricated Pt/tantalum oxide (Ta2O5) Schottky diodes for hydrogen sensing applications. Thin (4 nm) layer of Ta2O5 was deposited on silicon (Si) and silicon carbide (SiC) substrates by radio frequency (RF) sputtering technique. We compared the performance of these sensors at different elevated temperatures of 100 ∘C and 150 ∘C. At these temperatures, the sensor based on SiC exhibited a larger sensitivity while the sensor based on Si exhibited a faster response toward hydrogen gas. We discussed herein, the responses exhibited by the Pt/Ta2O5 based Schottky diodes demonstrated a promising potential for hydrogen sensing applications.
Resumo:
Nanostructured tungsten oxide thin film based gas sensors have been developed by thermal evaporation method to detect CO at low operating temperatures. The influence of Fe-doping and annealing heat treatment on microstructural and gas sensing properties of these films have been investigated. Fe was incorporated in WO3 film by co-evaporation and annealing was performed at 400oC for 2 hours in air. AFM analysis revealed a grain size of about 10-15 nm in all the films. GIXRD analysis showed that as-deposited films are amorphous and annealing at 400oC improved the crystallinity. Raman and XRD analysis indicated that Fe is incorporated in the WO3 matrix as a substitutional impurity, resulting in shorter O-W-O bonds and lattice cell parameters. Doping with Fe contributed significantly towards CO sensing performance of WO3 thin films. A good response to various concentrations (10-1000 ppm) of CO has been achieved with 400oC annealed Fe-doped WO3 film at a low operating temperature of 150oC.
Sensing properties of e-beam evaporated nanostructured pure and iron-doped tungsten oxide thin films
Resumo:
Gas sensing properties of nanostructured pure and iron-doped WO3 thin films are discussed. Electron beam evaporation technique has been used to obtain nanostructured thin films of WO3 and WO3:Fe with small grain size and porosity. Atomic force microscopy has been employed to study the microstructure. High sensitivity of both films towards NO2 is observed. Doping of the tungsten oxide film with Fe decreased the material resistance by a factor of about 30 when exposed to 5 ppm NO2. The high sensitivity is attributed to an improved microstructure of the films obtained through e-beam evaporation technique, and subsequent annealing at 300oC for 1 hour.
Resumo:
The character of James Bond for many people is intrinsically linked in their minds with particular brands – Aston Martin, Bollinger, Omega, Smirnoff vodka, and so on. This direct association between character and brand highlights the intrinsic role of product placement in the film industry, and in the James Bond films in particular. Selling James Bond: Product Placement in the James Bond Films provides a comprehensive overview of the history of product placement in the James Bond series – charting the progression of the practice and drawing direct correlations to significant cultural and historical events that impacted upon the number and types of products incorporated into the series. While primarily a financial arrangement, it is also important that the practice of product placement be examined and understood in relation to these cultural contexts, an area of research so far largely ignored by academic study. Through extensive content analysis of the official James Bond film series, as well as utilising directors’ commentary and industry reports, this book illustrates the strong impact specific cultural and historical events have had on the practice of product placement in the series. In doing so, it provides an exciting and in-depth “behind the scenes” look at the James Bond film series, and its complicated and sometimes contentious history of product placement. In the process, it charts the gradual emergence of product placement from the more traditional background shot to becoming so embedded in the actual film narrative that they have become simply yet another method for filmmakers to produce cultural meaning.
Resumo:
This study reports on the gas sensing characteristics of Fe-doped (10 at.%) tungsten oxide thin films of various thicknesses (100–500 nm) prepared by electron beam evaporation. The performance of these films in sensing four gases (H2, NH3, NO2 and N2O) in the concentration range 2–10,000 ppm at operating temperatures of 150–280 °C has been investigated. The results are compared with the sensing performance of a pure WO3 film of thickness 300 nm produced by the same method. Doping of the tungsten oxide film with 10 at.% Fe significantly increases the base conductance of the pure film but decreases the gas sensing response. The maximum response measured in this experiment, represented by the relative change in resistance when exposed to a gas, was ΔR/R = 375. This was the response amplitude measured in the presence of 5 ppm NO2 at an operating temperature of 250 °C using a 400 nm thick WO3:Fe film. This value is slightly lower than the corresponding result obtained using the pure WO3 film (ΔR/R = 450). However it was noted that the WO3:Fe sensor is highly selective to NO2, exhibiting a much higher response to NO2 compared to the other gases. The high performance of the sensors to NO2 was attributed to the small grain size and high porosity of the films, which was obtained through e-beam evaporation and post-deposition heat treatment of the films at 300 °C for 1 h in air.
Resumo:
THERE is an increasing need for biodegradable plastics because they are environmentally friendly and can replace petroleum-based non-degradable plastics which pollute the environment. Starch-derived films reinforced with sugar cane bagasse fibre, which are biodegradable, have been prepared and characterised by gravimetric analysis for moisture uptake, X-ray powder diffraction for crystallinity, and tensile testing for mechanical properties. Results have shown that the addition of bagasse fibre (5 wt%, 10 wt% or 20 wt%) to either (modified) potato starch (Soluble starch) or hydroxypropylated maize starch reduced moisture uptake by up to 30% at 58% relative humidity (RH). Also, the tensile strength and the Young’s Modulus increased up to 63% and 80% respectively, with the maximum value obtained with 5 wt% fibre at 58% RH. However, the tensile strain of the films significantly decreased by up to 84%. The results have been explained based on the crystallinity of the films and the intrinsic properties of starch and bagasse fibres.
Resumo:
This article explores how adult paid work is portrayed in 'family' feature length films. The study extends previous critical media literature which has overwhelmingly focused on depictions of gender and violence, exploring the visual content of films that is relevant to adult employment. Forty-two G/PG films were analyzed for relevant themes. Consistent with the exploratory nature of the research, themes emerged inductively from the films' content. Results reveal six major themes: males are more visible in adult work roles than women; the division of labour remains gendered; work and home are not mutually exclusive domains; organizational authority and power is wielded in punitive ways; there are avenues to better employment prospects; and status/money is paramount. The findings of the study reflect a range of subject matters related to occupational characteristics and work-related communication and interactions which are typically viewed by children in contemporary society.
Resumo:
In this thesis, the author proposed and developed gas sensors made of nanostructured WO3 thin film by a thermal evaporation technique. This technique gives control over film thickness, grain size and purity. The device fabrication, nanostructured material synthesis, characterization and gas sensing performance have been undertaken. Three different types of nanostructured thin films, namely, pure WO3 thin films, iron-doped WO3 thin films by co-evaporation and Fe-implanted WO3 thin films have been synthesized. All the thin films have a film thickness of 300 nm. The physical, chemical and electronic properties of these films have been optimized by annealing heat treatment at 300ºC and 400ºC for 2 hours in air. Various analytical techniques were employed to characterize these films. Atomic Force Microscopy and Transmission Electron Microscopy revealed a very small grain size of the order 5-10 nm in as-deposited WO3 films, and annealing at 300ºC or 400ºC did not result in any significant change in grain size. X-ray diffraction (XRD) analysis revealed a highly amorphous structure of as-deposited films. Annealing at 300ºC for 2 hours in air did not improve crystallinity in these films. However, annealing at 400ºC for 2 hours in air significantly improved the crystallinity in pure and iron-doped WO3 thin films, whereas it only slightly improved the crystallinity of iron-implanted WO3 thin film as a result of implantation. Rutherford backscattered spectroscopy revealed an iron content of 0.5 at.% and 5.5 at.% in iron-doped and iron-implanted WO3 thin films, respectively. The RBS results have been confirmed using energy dispersive x-ray spectroscopy (EDX) during analysis of the films using transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) revealed significant lowering of W 4f7/2 binding energy in all films annealed at 400ºC as compared with the as-deposited and 300ºC annealed films. Lowering of W 4f7/2 is due to increase in number of oxygen vacancies in the films and is considered highly beneficial for gas sensing. Raman analysis revealed that 400ºC annealed films except the iron-implanted film are highly crystalline with significant number of O-W-O bonds, which was consistent with the XRD results. Additionally, XRD, XPS and Raman analyses showed no evidence of secondary peaks corresponding to compounds of iron due to iron doping or implantation. This provided an understanding that iron was incorporated in the host WO3 matrix rather than as a separate dispersed compound or as catalyst on the surface. WO3 thin film based gas sensors are known to operate efficiently in the temperature range 200ºC-500 ºC. In the present study, by optimizing the physical, chemical and electronic properties through heat treatment and doping, an optimum response to H2, ethanol and CO has been achieved at a low operating temperature of 150ºC. Pure WO3 thin film annealed at 400ºC showed the highest sensitivity towards H2 at 150ºC due to its very small grain size and porosity, coupled with high number of oxygen vacancies, whereas Fe-doped WO3 film annealed at 400ºC showed the highest sensitivity to ethanol at an operating temperature of 150ºC due to its crystallinity, increased number of oxygen vacancies and higher degree of crystal distortions attributed to Fe addition. Pure WO3 films are known to be insensitive to CO, but iron-doped WO3 thin film annealed at 300ºC and 400ºC showed an optimum response to CO at an operating temperature of 150ºC. This result is attributed to lattice distortions produced in WO3 host matrix as a result of iron incorporation as substitutional impurity. However, iron-implanted WO3 thin films did not show any promising response towards the tested gases as the film structure has been damaged due to implantation, and annealing at 300ºC or 400ºC was not sufficient to induce crystallinity in these films. This study has demonstrated enhanced sensing properties of WO3 thin film sensors towards CO at lower operating temperature, which was achieved by optimizing the physical, chemical and electronic properties of the WO3 film through Fe doping and annealing. This study can be further extended to systematically investigate the effects of different Fe concentrations (0.5 at.% to 10 at.%) on the sensing performance of WO3 thin film gas sensors towards CO.