376 resultados para TRANSISTORS
Resumo:
Organic field-effect transistors (OFETs) are becoming interesting owing to their prospective application as cheap, bendable and light weight electronic devices rnlike flexible displays. However, the bottleneck of OFETs is their typically low charge carrier mobilities. An effective and crucial route towards circumventing thisrnhurdle is the control of organic semiconductor thin film morphology which critically determine charge carrier transport. In this work, the influence of film morphologyrnis highlighted together with its impact on OFET transistor performance.
Resumo:
Organic printed electronics is attracting an ever-growing interest in the last decades because of its impressive breakthroughs concerning the chemical design of π-conjugated materials and their processing. This has an impact on novel applications, such as flexible-large-area displays, low- cost printable circuits, plastic solar cells and lab-on-a-chip devices. The organic field-effect transistor (OFET) relies on a thin film of organic semiconductor that bridges source and drain electrodes. Since its first discovery in the 80s, intensive research activities were deployed in order to control the chemico-physical properties of these electronic devices and consequently their charge. Self-assembled monolayers (SAMs) are a versatile tool for tuning the properties of metallic, semi-conducting, and insulating surfaces. Within this context, OFETs represent reliable instruments for measuring the electrical properties of the SAMs in a Metal/SAM/OS junction. Our experimental approach, named Charge Injection Organic-Gauge (CIOG), uses OTFT in a charge-injection controlled regime. The CIOG sensitivity has been extensively demonstrated on different homologous self-assembling molecules that differ in either chain length or in anchor/terminal group. One of the latest applications of organic electronics is the so-called “bio-electronics” that makes use of electronic devices to encompass interests of the medical science, such as biosensors, biotransducers etc… As a result, thee second part of this thesis deals with the realization of an electronic transducer based on an Organic Field-Effect Transistor operating in aqueous media. Here, the conventional bottom gate/bottom contact configuration is replaced by top gate architecture with the electrolyte that ensures electrical contact between the top gold electrode and the semiconductor layer. This configuration is named Electrolyte-Gated Field-Effect Transistor (EGOFET). The functionalization of the top electrode is the sensing core of the device allowing the detection of dopamine as well as of protein biomarkers with ultra-low sensitivity.
Resumo:
The aim of the research activity focused on the investigation of the correlation between the degree of purity in terms of chemical dopants in organic small molecule semiconductors and their electrical and optoelectronic performances once introduced as active material in devices. The first step of the work was addressed to the study of the electrical performances variation of two commercial organic semiconductors after being processed by means of thermal sublimation process. In particular, the p-type 2,2′′′-Dihexyl-2,2′:5′,2′′:5′′,2′′′-quaterthiophene (DH4T) semiconductor and the n-type 2,2′′′- Perfluoro-Dihexyl-2,2′:5′,2′′:5′′,2′′′-quaterthiophene (DFH4T) semiconductor underwent several sublimation cycles, with consequent improvement of the electrical performances in terms of charge mobility and threshold voltage, highlighting the benefits brought by this treatment to the electric properties of the discussed semiconductors in OFET devices by the removal of residual impurities. The second step consisted in the provision of a metal-free synthesis of DH4T, which was successfully prepared without organometallic reagents or catalysts in collaboration with Dr. Manuela Melucci from ISOF-CNR Institute in Bologna. Indeed the experimental work demonstrated that those compounds are responsible for the electrical degradation by intentionally doping the semiconductor obtained by metal-free method by Tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4) and Tributyltin chloride (Bu3SnCl), as well as with an organic impurity, like 5-hexyl-2,2':5',2''-terthiophene (HexT3) at, in different concentrations (1, 5 and 10% w/w). After completing the entire evaluation process loop, from fabricating OFET devices by vacuum sublimation with implemented intentionally-doped batches to the final electrical characterization in inherent-atmosphere conditions, commercial DH4T, metal-free DH4T and the intentionally-doped DH4T were systematically compared. Indeed, the fabrication of OFET based on doped DH4T clearly pointed out that the vacuum sublimation is still an inherent and efficient purification method for crude semiconductors, but also a reliable way to fabricate high performing devices.
Resumo:
Organic electronics is an emerging field with a vast number of applications having high potential for commercial success. Although an enormous progress has been made in this research area, many organic electronic applications such as organic opto-electronic devices, organic field effect transistors and organic bioelectronic devices still require further optimization to fulfill the requirements for successful commercialization. The main bottle neck that hinders large scale production of these devices is their performances and stability. The performance of the organic devices largely depends on the charge transport processes occurring at the interfaces of various material that it is composed of. As a result, the key ingredient needed for a successful improvement in the performance and stability of organic electronic devices is an in-depth knowledge of the interfacial interactions and the charge transport phenomena taking place at different interfaces. The aim of this thesis is to address the role of the various interfaces between different material in determining the charge transport properties of organic devices. In this framework, I chose an Organic Field Effect Transistor (OFET) as a model system to carry out this study as it An OFET offers various interfaces that can be investigated as it is made up of stacked layers of various material. In order to probe the intrinsic properties that governs the charge transport, we have to be able to carry out thorough investigation of the interactions taking place down at the accumulation layer thickness. However, since organic materials are highly instable in ambient conditions, it becomes quite impossible to investigate the intrinsic properties of the material without the influence of extrinsic factors like air, moisture and light. For this reason, I have employed a technique called the in situ real-time electrical characterization technique which enables electrical characterization of the OFET during the growth of the semiconductor.
Resumo:
Die Arbeit beschäftigt sich mit der Kontrolle von Selbstorganisation und Mikrostruktur von organischen Halbleitern und deren Einsatz in OFETs. In Kapiteln 3, 4 und 5 eine neue Lösungsmittel-basierte Verabeitungsmethode, genannt als Lösungsmitteldampfdiffusion, ist konzipiert, um die Selbstorganisation von Halbleitermolekülen auf der Oberfläche zu steuern. Diese Methode als wirkungsvolles Werkzeug erlaubt eine genaue Kontrolle über die Mikrostruktur, wie in Kapitel 3 am Beispiel einer D-A Dyad bestehend aus Hexa-peri-hexabenzocoronene (HBC) als Donor und Perylene Diimide (PDI) als Akzeptor beweisen. Die Kombination aus Oberflächenmodifikation und Lösungsmitteldampf kann die Entnetzungseffekte ausgleichen, so dass die gewüschte Mikrostruktur und molekulare Organisation auf der Oberfläche erreicht werden kann. In Kapiteln 4 und 5 wurde diese Methode eingesetzt, um die Selbstorganisation von Dithieno[2, 3-d;2’, 3’-d’] benzo[1,2-b;4,5-b’]dithiophene (DTBDT) und Cyclopentadithiophene -benzothiadiazole copolymer (CDT-BTZ) Copolymer zu steuern. Die Ergebnisse könnten weitere Studien stimulieren und werfen Licht aus andere leistungsfaähige konjugierte Polymere. rnIn Kapiteln 6 und 7 Monolagen und deren anschlieβende Mikrostruktur von zwei konjugierten Polymeren, Poly (2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) PBTTT und Poly{[N,N ′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis (dicarboximide)-2,6-diyl]-alt-5,5′- (2,2′-bithiophene)}, P(NDI2OD-T2)) wurden auf steife Oberflächen mittels Tauchbeschichtung aufgebracht. Da sist das erste Mal, dass es gelungen ist, Polymer Monolagen aus der Lösung aufzubringen. Dieser Ansatz kann weiter auf eine breite Reihe von anderen konjugierten Polymeren ausgeweitet werden.rnIn Kapitel 8 wurden PDI-CN2 Filme erfolgreich von Monolagen zu Bi- und Tri-Schichten auf Oberflächen aufgebracht, die unterschiedliche Rauigkeiten besitzen. Für das erste Mal, wurde der Einfluss der Rauigkeit auf Lösungsmittel-verarbeitete dünne Schichten klar beschrieben.rn
Resumo:
La scoperta dei semiconduttori amorfi ha segnato l’era della microelettronica su larga scala rendendo possibile il loro impiego nelle celle solari o nei display a matrice attiva. Infatti, mentre i semiconduttori a cristalli singoli non sono consoni a questo tipo di applicazioni e i s. policristallini presentano il problema dei bordi di grano, i film amorfi possono essere creati su larga scala (>1 m^2) a basse temperature (ad es. <400 °C) ottenendo performance soddisfacenti sia su substrati rigidi che flessibili. Di recente la ricerca sta compiendo un grande sforzo per estendere l’utilizzo di questa nuova elettronica flessibile e su larga scala ad ambienti soggetti a radiazioni ionizzanti, come lo sono i detector di radiazioni o l’elettronica usata in applicazioni spaziali (satelliti). A questa ricerca volge anche la mia tesi, che si confronta con la fabbricazione e la caratterizzazione di transistor a film sottili basati su ossidi semiconduttori ad alta mobilità e lo studio della loro resistenza ai raggi X. La micro-fabbricazione, ottimizzazione e caratterizzazione dei dispositivi è stata realizzata nei laboratori CENIMAT e CEMOP dell’Università Nova di Lisbona durante quattro mesi di permanenza. Tutti i dispositivi sono stati creati con un canale n di ossido di Indio-Gallio-Zinco (IGZO). Durante questo periodo è stato realizzato un dispositivo dalle ottime performance e con interessanti caratteristiche, una delle quali è la non variazione del comportamento capacitivo in funzione della frequenza e la formidabile resistenza alle radiazioni. Questo dispositivo presenta 114 nm di dielettrico, realizzato con sette strati alternati di SiO2/ Ta2O5. L’attività di ricerca svolta al Dipartimento di Fisica e Astronomia di Bologna riguarda prevalentemente lo studio degli effetti delle radiazioni ionizzanti su TFTs. Gli esperimenti hanno rivelato che i dispositivi godono di una buona stabilità anche se soggetti alle radiazioni. Infatti hanno mostrato performance pressoché inalterate anche dopo un’esposizione a 1 kGy di dose cumulativa di raggi X mantenendo circa costanti parametri fondamentali come la mobilità, il threshold voltage e la sub-threshold slope. Inoltre gli effetti dei raggi X sui dispositivi, così come parametri fondamentali quali la mobilità, si sono rivelati essere notevolmente influenzati dallo spessore del dielettrico.
Resumo:
The present thesis work proposes a new physical equivalent circuit model for a recently proposed semiconductor transistor, a 2-drain MSET (Multiple State Electrostatically Formed Nanowire Transistor). It presents a new software-based experimental setup that has been developed for carrying out numerical simulations on the device and on equivalent circuits. As of 2015, we have already approached the scaling limits of the ubiquitous CMOS technology that has been in the forefront of mainstream technological advancement, so many researchers are exploring different ideas in the realm of electrical devices for logical applications, among them MSET transistors. The idea that underlies MSETs is that a single multiple-terminal device could replace many traditional transistors. In particular a 2-drain MSET is akin to a silicon multiplexer, consisting in a Junction FET with independent gates, but with a split drain, so that a voltage-controlled conductive path can connect either of the drains to the source. The first chapter of this work presents the theory of classical JFETs and its common equivalent circuit models. The physical model and its derivation are presented, the current state of equivalent circuits for the JFET is discussed. A physical model of a JFET with two independent gates has been developed, deriving it from previous results, and is presented at the end of the chapter. A review of the characteristics of MSET device is shown in chapter 2. In this chapter, the proposed physical model and its formulation are presented. A listing for the SPICE model was attached as an appendix at the end of this document. Chapter 3 concerns the results of the numerical simulations on the device. At first the research for a suitable geometry is discussed and then comparisons between results from finite-elements simulations and equivalent circuit runs are made. Where points of challenging divergence were found between the two numerical results, the relevant physical processes are discussed. In the fourth chapter the experimental setup is discussed. The GUI-based environments that allow to explore the four-dimensional solution space and to analyze the physical variables inside the device are described. It is shown how this software project has been structured to overcome technical challenges in structuring multiple simulations in sequence, and to provide for a flexible platform for future research in the field.
Resumo:
The single electron transistor (SET) is a Coulomb blockade device, whose operation is based on the controlled manipulation of individual electrons. Single electron transistors show immense potential to be used in future ultra lowpower devices, high density memory and also in high precision electrometry. Most SET devices operate at cryogenic temperatures, because the charging energy is much smaller than the thermal oscillations. The room temperature operation of these devices is possible with sub- 10nm nano-islands due to the inverse dependance of charging energy on the radius of the conducting nano-island. The fabrication of sub-10nm features with existing lithographic techniques is a technological challenge. Here we present the results for the first room temperature operating SET device fabricated using Focused Ion Beam deposition technology. The SET device, incorporates an array of tungsten nano-islands with an average diameter of 8nm. The SET devices shows clear Coulomb blockade for different gate voltages at room temperature. The charging energy of the device was calculated to be 160.0 meV; the capacitance per junction was found to be 0.94 atto F; and the tunnel resistance per junction was calculated to be 1.26 G Ω. The tunnel resistance is five orders of magnitude larger than the quantum of resistance (26 k Ω) and allows for the localization of electrons on the tungsten nano-island. The lower capacitance of the device combined with the high tunnel resistance, allows for the Coulomb blockade effects observed at room temperature. Different device configurations, minimizing the total capacitance of the device have been explored. The effect of the geometry of the nano electrodes on the device characteristics has been presented. Simulated device characteristics, based on the soliton model have been discussed. The first application of SET device as a gas sensor has been demonstrated.
Resumo:
Three new organic semiconductors, in which either two methoxy units are directly linked to a dibenzotetrathiafulvalene (DB-TTF) central core and a 2,1,3-chalcogendiazole is fused on the one side, or four methoxy groups are linked to the DB-TTF, have been synthesised as active materials for organic field-effect transistors (OFETs). Their electrochemical behaviour, electronic absorption and fluorescence emission as well as photoinduced intramolecular charge transfer were studied. The electron-withdrawing 2,1,3-chalcogendiazole unit significantly affects the electronic properties of these semiconductors, lowering both the HOMO and LUMO energy levels and hence increasing the stability of the semiconducting material. The solution-processed single-crystal transistors exhibit high performance with a hole mobility up to 0.04 cm2 V−1 s−1 as well as good ambient stability.
Resumo:
Relacionado con línea de investigación del GDS del ISOM ver http://www.isom.upm.es/dsemiconductores.php
Resumo:
The performance of field effect transistors based on an single graphene ribbon with a constriction and a single back gate are studied with the help of atomistic models. It is shown how this scheme, unlike that of traditional carbon-nanotube-based transistors, reduces the importance of the specifics of the chemical bonding to the metallic electrodes in favor of the carbon-based part of device. The ultimate performance limits are here studied for various constriction and metal-ribbon contact models. In particular, we show that, even for poorly contacting metals, properly tailored constrictions can give promising values for both the on conductance and the subthreshold swing.
Resumo:
"August 6, 1963"
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.