969 resultados para Stochastic dynamic programming


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a mathematical programming approach for the classicalPSPACE - hard restless bandit problem in stochastic optimization.We introduce a hierarchy of n (where n is the number of bandits)increasingly stronger linear programming relaxations, the lastof which is exact and corresponds to the (exponential size)formulation of the problem as a Markov decision chain, while theother relaxations provide bounds and are efficiently computed. Wealso propose a priority-index heuristic scheduling policy fromthe solution to the first-order relaxation, where the indices aredefined in terms of optimal dual variables. In this way wepropose a policy and a suboptimality guarantee. We report resultsof computational experiments that suggest that the proposedheuristic policy is nearly optimal. Moreover, the second-orderrelaxation is found to provide strong bounds on the optimalvalue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work introduces a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. Convergence of the output error for the proposed control method is verified by using a Lyapunov function. Several simulation examples are provided to demonstrate the efficiency of the developed control method. The manner in which such a method is extended to nonlinear multi-variable systems with different delays between the input-output pairs is considered and demonstrated through simulation examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* This research was supported by a grant from the Greek Ministry of Industry and Technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptive critic methods have common roots as generalizations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, nonlinear and nonstationary environments. In this study, a novel probabilistic dual heuristic programming (DHP) based adaptive critic controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) adaptive critic method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterized by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the critic network is then calculated and shown to be equal to the analytically derived correct value.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The network revenue management (RM) problem arises in airline, hotel, media,and other industries where the sale products use multiple resources. It can be formulatedas a stochastic dynamic program but the dynamic program is computationallyintractable because of an exponentially large state space, and a number of heuristicshave been proposed to approximate it. Notable amongst these -both for their revenueperformance, as well as their theoretically sound basis- are approximate dynamic programmingmethods that approximate the value function by basis functions (both affinefunctions as well as piecewise-linear functions have been proposed for network RM)and decomposition methods that relax the constraints of the dynamic program to solvesimpler dynamic programs (such as the Lagrangian relaxation methods). In this paperwe show that these two seemingly distinct approaches coincide for the network RMdynamic program, i.e., the piecewise-linear approximation method and the Lagrangianrelaxation method are one and the same.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[cat] En aquest treball s'analitza un model estocàstic en temps continu en el que l'agent decisor descompta les utilitats instantànies i la funció final amb taxes de preferència temporal constants però diferents. En aquest context es poden modelitzar problemes en els quals, quan el temps s'acosta al moment final, la valoració de la funció final incrementa en comparació amb les utilitats instantànies. Aquest tipus d'asimetria no es pot descriure ni amb un descompte estàndard ni amb un variable. Per tal d'obtenir solucions consistents temporalment es deriva l'equació de programació dinàmica estocàstica, les solucions de la qual són equilibris Markovians. Per a aquest tipus de preferències temporals, s'estudia el model clàssic de consum i inversió (Merton, 1971) per a les funcions d'utilitat del tipus CRRA i CARA, comparant els equilibris Markovians amb les solucions inconsistents temporalment. Finalment es discuteix la introducció del temps final aleatori.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[cat] En aquest treball s'analitza un model estocàstic en temps continu en el que l'agent decisor descompta les utilitats instantànies i la funció final amb taxes de preferència temporal constants però diferents. En aquest context es poden modelitzar problemes en els quals, quan el temps s'acosta al moment final, la valoració de la funció final incrementa en comparació amb les utilitats instantànies. Aquest tipus d'asimetria no es pot descriure ni amb un descompte estàndard ni amb un variable. Per tal d'obtenir solucions consistents temporalment es deriva l'equació de programació dinàmica estocàstica, les solucions de la qual són equilibris Markovians. Per a aquest tipus de preferències temporals, s'estudia el model clàssic de consum i inversió (Merton, 1971) per a les funcions d'utilitat del tipus CRRA i CARA, comparant els equilibris Markovians amb les solucions inconsistents temporalment. Finalment es discuteix la introducció del temps final aleatori.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[cat] En aquest treball s'analitza l'efecte que comporta l'introducció de preferències inconsistents temporalment sobre les decisions òptimes de consum, inversió i compra d'assegurança de vida. En concret, es pretén recollir la creixent importància que un individu dóna a la herència que deixa i a la riquesa disponible per a la seva jubilació al llarg de la seva vida laboral. Amb aquesta finalitat, es parteix d'un model estocàstic en temps continu amb temps final aleatori, i s'introdueix el descompte heterogeni, considerant un agent amb una distribució de vida residual coneguda. Per tal d'obtenir solucions consistents temporalment es resol una equació de programació dinàmica no estàndard. Per al cas de funcions d'utilitat del tipus CRRA i CARA es troben solucions explícites. Finalment, els resultats obtinguts s'il·lustren numèricament.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[cat] En aquest treball s'analitza l'efecte que comporta l'introducció de preferències inconsistents temporalment sobre les decisions òptimes de consum, inversió i compra d'assegurança de vida. En concret, es pretén recollir la creixent importància que un individu dóna a la herència que deixa i a la riquesa disponible per a la seva jubilació al llarg de la seva vida laboral. Amb aquesta finalitat, es parteix d'un model estocàstic en temps continu amb temps final aleatori, i s'introdueix el descompte heterogeni, considerant un agent amb una distribució de vida residual coneguda. Per tal d'obtenir solucions consistents temporalment es resol una equació de programació dinàmica no estàndard. Per al cas de funcions d'utilitat del tipus CRRA i CARA es troben solucions explícites. Finalment, els resultats obtinguts s'il·lustren numèricament.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

I study long-term financial contracts between lenders and borrowers in the absence of perfect enforceability and when both parties are credit constrained. Borrowers repeatedly have projects to undertake and need external financing. Lenders can commit to contractual agreements whereas borrowers can renege any period. I show that equilibrium contracts feature interesting dynamics: the economy exhibits efficient investment cycles; absence of perfect enforcement and shortage of capital skew the cycles toward states of liquidity drought; credit is rationed if either the lender has too little capital or if the borrower has too little collateral. This paper's technical contribution is its demonstration of the existence and characterization of financial contracts that are solutions to a non-convex dynamic programming problem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dans les études sur le transport, les modèles de choix de route décrivent la sélection par un utilisateur d’un chemin, depuis son origine jusqu’à sa destination. Plus précisément, il s’agit de trouver dans un réseau composé d’arcs et de sommets la suite d’arcs reliant deux sommets, suivant des critères donnés. Nous considérons dans le présent travail l’application de la programmation dynamique pour représenter le processus de choix, en considérant le choix d’un chemin comme une séquence de choix d’arcs. De plus, nous mettons en œuvre les techniques d’approximation en programmation dynamique afin de représenter la connaissance imparfaite de l’état réseau, en particulier pour les arcs éloignés du point actuel. Plus précisément, à chaque fois qu’un utilisateur atteint une intersection, il considère l’utilité d’un certain nombre d’arcs futurs, puis une estimation est faite pour le restant du chemin jusqu’à la destination. Le modèle de choix de route est implanté dans le cadre d’un modèle de simulation de trafic par événements discrets. Le modèle ainsi construit est testé sur un modèle de réseau routier réel afin d’étudier sa performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El objetivo de este documento es recopilar algunos resultados clasicos sobre existencia y unicidad ´ de soluciones de ecuaciones diferenciales estocasticas (EDEs) con condici ´ on final (en ingl ´ es´ Backward stochastic differential equations) con particular enfasis en el caso de coeficientes mon ´ otonos, y su cone- ´ xion con soluciones de viscosidad de sistemas de ecuaciones diferenciales parciales (EDPs) parab ´ olicas ´ y el´ıpticas semilineales de segundo orden.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents necessary and sufficient conditions for the following problem: given a linear time invariant plant G(s) = N(s)D(s)-1 = C(sI - A]-1B, with m inputs, p outputs, p > m, rank(C) = p, rank(B) = rank(CB) = m, £nd a tandem dynamic controller Gc(s) = D c(s)-1Nc(s) = Cc(sI - A c)-1Bc + Dc, with p inputs and m outputs and a constant output feedback matrix Ko ε ℝm×p such that the feedback system is Strictly Positive Real (SPR). It is shown that this problem has solution if and only if all transmission zeros of the plant have negative real parts. When there exists solution, the proposed method firstly obtains Gc(s) in order to all transmission zeros of Gc(s)G(s) present negative real parts and then Ko is found as the solution of some Linear Matrix Inequalities (LMIs). Then, taking into account this result, a new LMI based design for output Variable Structure Control (VSC) of uncertain dynamic plants is presented. The method can consider the following design specifications: matched disturbances or nonlinearities of the plant, output constraints, decay rate and matched and nonmatched plant uncertainties. © 2006 IEEE.