987 resultados para Spin Polarization


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present tunneling experiments on Fe~001!/MgO~20 Å!/FeCo~001! single-crystal epitaxial junctions of high quality grown by sputtering and laser ablation. Tunnel magnetoresistance measurements give 60% at 30 K, to be compared with 13% obtained recently on ~001!-oriented Fe/amorphous-Al2O3 /FeCo tunnel junctions. This difference demonstrates that the spin polarization of tunneling electrons is not directly related to the density of states of the free metal surface Fe~001! in this case but depends on the actual electronic structure of the entire electrode/barrier system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show both theoretical and experimental evidences of the appearance of ferromagnetism in MgO thin films. First-principles calculations allow predicting the possibility of the formation of a local moment in MgO, provided the existence of Mg vacancies which create holes on acceptor levels near the O 2p-dominated valence band. Magnetic measurements evidence of the existence of room-temperature ferromagnetism in MgO thin films. High-resolution transmission electron microscopy demonstrates the existence of cation vacancies in our samples. Finally, by applying the element specificity of the x-ray magnetic circular dichroism technique, we also demonstrate that the magnetic moments of the system arise from the spin polarization of the 2p electrons of oxygen atoms surrounding Mg vacancies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The possible coexistence of ferromagnetism and charge/orbital order in Bi3/4Sr1/4MnO3 has been investigated. The manganite Bi0.75Sr0.25MnO3, with commensurate charge balance, undergoes an electronic transition at TCO~600 K that produces a longrange modulation with double periodicity along a and c axis, and unusual anisotropic evolution of the lattice parameters. The previously proposed ferromagnetic properties of this new ordered phase were studied by magnetometry and diffraction techniques. In zero field the magnetic structure is globally antiferromagnetic, ruling out the apparition of spontaneous ferromagnetism. However, the application of magnetic fields produces a continuous progressive canting of the moments, inducing a ferromagnetic phase even for relatively small fields (H<<1 T). Application of pulsed high fields produces a remarkable and reversible spin polarization (under 30 T, the ferromagnetic moment is ~3 ¿B/Mn, without any sign of charge order melting). The coexistence of ferromagnetism and charge order at low and very-high fields is a remarkable property of this system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work AC magnetometer was developed and primary test measurements were performed for temperature range from 77 K up to 350 K in frequency range from 1 kHz up to 20 kHz. In the course of the present work dependencies of magnetization on temperature for Lao7Sr03Mni _yFeyO3 with y = 0.15, 0.20, 0.25 were obtained in DC magnetic field using SQUID magnetometer and in AC magnetic field using the developed AC magnetometer. Lai.XSrXMnO3 (LSMO) compounds belong to the class of Mn perovskites, which demonstrate very high degree of spin polarization. These materials are of great importance for nowadays applications in spintronics, where spin polarized electron transport is used. Spin glass like behavior was found as a characteristic feature of these solid solutions with the freezing temperature in the range 65 — 210 K.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is considerable interest in intramolecular energy transfer, especially in complexes which absorb visible light, because it is crucial to the better understanding of photoharvesting systems in photosynthetic organisms and for utilizing solar energy as well. Porphyrin dimers represent one of the best systems for the exploration of light-induced intramolecular energy transfer. Many kinds of porphyrins and porphyrin dimers have been studied over the past decade, however little attention has been paid to the influence of paramagnetic metals on the behavior of their excited states. In this thesis, Electron Paramagnetic Resonance Spectroscopy (EPR) is used to study such compounds. After light irradiation, porphyrins easily produce a variety of excited states, which are spin polarized and can be detected by the time-resolved (TR) EPR technique. The spin polarized results for vanadyl porphyrins, their electrostatically-coupled dimers, a covalently-linked copper porphyrin-free base porphyrin dimer, and free base porphyrins are presented in this thesis. From these results we can conclude that the spin polarization patterns of vanadyl porphyrins come primarily from the trip-quartet state generated by intersystem crossing (lSC) from the excited sing-doublet state through the trip-doublet state. The spin polarization pattern of electrostatically-coupled vanadyl porphyrin-free base porphyrin dimer is produced by the triplet state of the free base porphyrin half which is coupled to the unpaired electron on the vanadyl ion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Triarylamminium radical-cation complexes. The detailed study of manganese, copper and nickel metal-radical complexes with triarylamminium ligands was conducted. Stable, neutral and pseudo-octahedral coordination monometallic complexes with simple monodentate 2,2`-bipyridine ligand containing a redox-active N,N`-(4,4`-dimethoxydiphenyl-amino) substituent were synthesized and fully characterized. The one-electron oxidation process and formation of persistent radical-cation complexes was observed by cyclic voltammetry and spectroelectrochemical measurements. Evans method measurements were performed with radical-cation complexes generated by chemical one-electron oxidation with NOPF6 in acetonitrile. The experimental results indicate ferromagnetic coupling between metal and triarylamminium cation in manganese (II) complex and antiferromagnetic coupling in nickel (II) complex. This data is supported by DFT calculations which also lend weight to the  spin polarization mechanism as an operative model for magnetic exchange coupling. Neutral bimetallic complexes with a new ditopic ligand were synthesized and fully characterized, including magnetic and electrochemical studies. Chemical oxidation of these precursor complexes did not generate radical-cations, but dicationic complexes, which was confirmed by UV-vis and EPR-experiments, as well as varied temperature magnetic measurements. DFT calculations for radical-cation complexes are included. A synthetic pathway for polytopic ligand with multiple redox-active triarylamine sites was developed. The structure of the ligand is presumably suitable for -spin polarization exchange model and allows for production of polymetallic complexes having high spin ground states. 2. Base-catalyzed hydrosilylation. A simple reductive base-catalyzed hydrosilation of aldehydes and ketones was adapted to the use of the cheap, safe, and non-toxic polymethylhydrosiloxane (PMHS) instead of the common PhSiH3 and (EtO)3SiH, which present significant cost and safety concerns, respectively. The conversion of silane into pentacoordinate silicate species upon addition of a base was studied in details for the cases of phenyl silane and PMHS and is believed to be essential for the hydrosilylation process. We discovered that nucleophiles (a base or fluoride-anion) induced the rearrangement of PMHS and TMDS into light silanes: MeSiH3 and Me2SiH2, respectively. The reductive properties of PMHS under basic conditions can be attributed to the formation of methyl silane and its conversion into a silicate species. A procedure for the generation of methyl silane and its use in further efficient reductions of aldehydes and ketones has been developed. The protocol was extended to the selective reduction of esters and tertiary amides into alcohols and aldimines into amines with good isolated yields and reduction of heterocyclic compounds was attempted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The magnetoresistance across interfaces in the itinerant ferromagnetic oxide SrRuO3 have been studied. To define appropriately the interfaces, epitaxial thin films have been grown on bicrystalline and laser-patterned SrTiO3 substrates. Comparison is made with results obtained on similar experiments using the double-exchange ferromagnetic oxide La2/3Sr1/3MnO3. It is found that in SrRuO3, interfaces induce a substantial negative magnetoresistance, although no traces of the low-field spin tunneling magnetoresistance are found. We discuss these results on the basis of the distinct degree of spin polarization in ruthenates and manganites and the different nature of the surface magnetic layer formed at interfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The magnetic properties and interactions between transition metal (TM) impurities and clusters in low-dimensional metallic hosts are studied using a first principles theoretical method. In the first part of this work, the effect of magnetic order in 3d-5d systems is addressed from the perspective of its influence on the enhancement of the magnetic anisotropy energy (MAE). In the second part, the possibility of using external electric fields (EFs) to control the magnetic properties and interactions between nanoparticles deposited at noble metal surfaces is investigated. The influence of 3d composition and magnetic order on the spin polarization of the substrate and its consequences on the MAE are analyzed for the case of 3d impurities in one- and two-dimensional polarizable hosts. It is shown that the MAE and easy- axis of monoatomic free standing 3d-Pt wires is mainly determined by the atomic spin-orbit (SO) coupling contributions. The competition between ferromagnetic (FM) and antiferromagnetic (AF) order in FePtn wires is studied in detail for n=1-4 as a function of the relative position between Fe atoms. Our results show an oscillatory behavior of the magnetic polarization of Pt atoms as a function of their distance from the magnetic impurities, which can be correlated to a long-ranged magnetic coupling of the Fe atoms. Exceptionally large variations of the induced spin and orbital moments at the Pt atoms are found as a function of concentration and magnetic order. Along with a violation of the third Hund’s rule at the Fe sites, these variations result in a non trivial behavior of the MAE. In the case of TM impurities and dimers at the Cu(111), the effects of surface charging and applied EFs on the magnetic properties and substrate-mediated magnetic interactions have been investigated. The modifications of the surface electronic structure, impurity local moments and magnetic exchange coupling as a result of the EF-induced metallic screening and charge rearrangements are analysed. In a first study, the properties of surface substitutional Co and Fe impurities are investigated as a function of the external charge per surface atom q. At large inter-impurity distances the effective magnetic exchange coupling ∆E between impurities shows RKKY-like oscillations as a function of the distance which are not significantly affected by the considered values of q. For distances r < 10 Å, important modifications in the magnitude of ∆E, involving changes from FM to AF coupling, are found depending non-monotonously on the value and polarity of q. The interaction energies are analysed from a local perspective. In a second study, the interplay between external EF effects, internal magnetic order and substrate-mediated magnetic coupling has been investigated for Mn dimers on Cu(111). Our calculations show that EF (∼ 1eV/Å) can induce a switching from AF to FM ground-state magnetic order within single Mn dimers. The relative coupling between a pair of dimers also shows RKKY-like oscillations as a function of the inter-dimer distance. Their effective magnetic exchange interaction is found to depend significantly on the magnetic order within the Mn dimers and on their relative orientation on the surface. The dependence of the substrate-mediated interaction on the magnetic state of the dimers is qualitatively explained in terms of the differences in the scattering of surface electrons. At short inter-dimer distances, the ground-state configuration is determined by an interplay between exchange interactions and EF effects. These results demonstrate that external surface charging and applied EFs offer remarkable possibilities of manipulating the sign and strength of the magnetic coupling of surface supported nanoparticles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In contrast with recent claims that the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional can provide a good description of the electronic and magnetic structures of VO2 phases [Eyert, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.016401 107, 016401 (2011)], we show here that the HSE lowest-energy solutions for both the low-temperature monoclinic (M1) phase and the high-temperature rutile (R) phase, which are obtained upon inclusion of spin polarization, are at odds with experimental observations. For the M1 phase the ground state is (but should not be) magnetic, while the ground state of the R phase, which is also spin polarized, is not (but should be) metallic. The energy difference between the low-temperature and high-temperature phases has strong discrepancies with the experimental latent heat.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The title radical (F4BlmNN) is a stable nitronylnitroxide that forms hydrogen-bonded NH center dot center dot center dot ON chains in the solid state. The chains assemble the F4BlmNN molecules to form stacked contacts between the radical groups, in a geometry that is expected to exhibit ferromagnetic (FM) exchange based on spin polarization (SP) models. The experimental magnetic susceptibility of F4BlmNN confirms the expectation, showing 1-D Heisenberg chain FM exchange behavior over 1.8-300 K with an intrachain exchange constant Of J(chain)/k = +22 K. At lower temperatures, ac magnetic susceptibility and variable field heat capacity measurements show that F4BlmNN acts as a quasi-1-D ferromagnet. The dominant ferromagnetic exchange interaction is attributable to overlap between spin orbitals of molecules within the hydrogen-bonded chains, consistent with the SP model expectations. The chains appear to be antiferromagnetically exchange coupled, giving cusps in the ac susceptibility and zero field heat capacity at lower temperatures. The results indicate that the sample orders magnetically at about 0.7 K. The magnetic heat capacity ordering cusp shifts to lower temperatures as external magnetic field increases, consistent with forming a bulk antiferromagnetic phase below a Neel temperature of T-N(0) = 0.72 K, with a critical field of H-c approximate to 1800 Oe. The interchain exchange is estimated to be zJ/k congruent to (-)0.1 K.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the transport properties (IxV curves and zero bias transmittance) of pristine graphene nanoribbons (GNRs) as well as doped with boron and nitrogen using an approach that combines nonequilibrium Green`s functions and density functional theory (DFT) [NEGF-DFT]. Even for a pristine nanoribbon we verify a spin-filter effect under finite bias voltage when the leads have an antiparallel magnetization. The presence of the impurities at the edges of monohydrogenated zigzag GNRs changes dramatically the charge transport properties inducing a spin-polarized conductance. The IxV curves for these systems show that depending on the bias voltage the spin polarization can be inverted. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1379-1386, 2011

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to the classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of a 3 + 1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present paper, we apply a similar approach to the problem of quantizing the massive 2 + 1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3 + 1 dimensions. The point is that in 2 + 1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2 + 1 dimensions is also interesting from the physical viewpoint (e.g., anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2 + 1 quantum theory of a spinor field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An optimization technique to solve distribution network planning (DNP) problem is presented. This is a very complex mixed binary nonlinear programming problem. A constructive heuristic algorithm (CHA) aimed at obtaining an excellent quality solution for this problem is presented. In each step of the CHA, a sensitivity index is used to add a circuit or a substation to the distribution network. This sensitivity index is obtained solving the DNP problem considering the numbers of circuits and substations to be added as continuous variables (relaxed problem). The relaxed problem is a large and complex nonlinear programming and was solved through an efficient nonlinear optimization solver. A local improvement phase and a branching technique were implemented in the CHA. Results of two tests using a distribution network are presented in the paper in order to show the ability of the proposed algorithm. ©2009 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O grafeno é a primeira estrutura bidimensional que se obteve experimentalmente. Sua rede cristalina é uma rede hexagonal, conhecida como "Favo de Mel", possui apenas um átomo de espessura. Cortes em folhas de grafeno, privilegiando determinada direção, geram as chamadas nanofitas de grafeno. Embora o grafeno se comporte como um metal, é sabido que as nanofitas podem apresentar comportamentos semicondutor, metálico ou semimetálico, dependendo da direção de corte e/ou largura da fita. No caso de nanofitas semicondutoras, a largura da banda proibida (band gap), entre outros fatores, depende da largura da nanofita. Neste trabalho adotou-se métodos de primeiros princípios como o DFT (Density Functional Theory), afim de se obter as características tais como curvas de dispersão para nanofitas. Neste trabalho, primeiramente, são apresentados diagramas de bandas de energia e curvas de densidade de estados para nanofitas de grafeno semicondutoras, de diferentes larguras, e na ausência de influências externas. Utilizou-se métodos de primeiros princípios para a obtenção destas curvas e o método das funções de Green do Não Equilíbrio para o transporte eletrônico. Posteriormente foi investigado a influência da hidrogenização, temperatura e tensão mecânica sobre sistema, isso além, de se estudar o comportamento de transporte eletrônico com e sem influência destes fatores externos. Vale ressaltar que as nanofitas de grafeno apresentam possibilidades reais de aplicação em nanodispositivos eletrônicos, a exemplo de nanodiodos e nanotransistores. Por esse motivo, é importante se ter o entendimento de como os fatores externos alteram as propriedades de tal material, pois assim, espera-se que as propriedades de dispositivos eletrônicos também sejam influenciadas da mesma maneira que as nanofitas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)