985 resultados para Sequential machine theory
Resumo:
The class of Schoenberg transformations, embedding Euclidean distances into higher dimensional Euclidean spaces, is presented, and derived from theorems on positive definite and conditionally negative definite matrices. Original results on the arc lengths, angles and curvature of the transformations are proposed, and visualized on artificial data sets by classical multidimensional scaling. A distance-based discriminant algorithm and a robust multidimensional centroid estimate illustrate the theory, closely connected to the Gaussian kernels of Machine Learning.
Resumo:
[eng] In the context of cooperative TU-games, and given an order of players, we consider the problem of distributing the worth of the grand coalition as a sequentia decision problem. In each step of process, upper and lower bounds for the payoff of the players are required related to successive reduced games. Sequentially compatible payoffs are defined as those allocation vectors that meet these recursive bounds. The core of the game is reinterpreted as a set of sequentally compatible payoffs when the Davis-Maschler reduced game is considered (Th.1). Independently of the reduction, the core turns out to be the intersections of the family of the sets of sequentially compatible payoffs corresponding to the different possible orderings (Th.2), so it is in some sense order-independent. Finally, we analyze advantagenous properties for the first player
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional stochastic simulation models. The innovative part of the paper presents integrated/hybrid model-machine learning (ML) residuals sequential simulations-MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used for modeling long-range spatial trends and sequential simulations of the residuals. NIL algorithms deliver non-linear solution for the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Tämän diplomityön tarkoituksena oli asentaa ja kehittää UPM-Kymmene Rauman tehtaiden PK2:lle luotettava ja toimiva ilmanläpäisyprofiilin mittaus. Työn tarkoituksena oli myös kartoittaa tietoja ilmanläpäisyprofiiliin vaikuttavista seikoista sekä mahdollisuuksista säätää ilmanläpäisyprofiilia. Lisäksi työn tavoitteena oli löytää toimiva menetelmä verrata online mitattua ilmanläpäisyprofiilia laboratoriossa mitattuun ilmanläpäisyprofiiliin online mittauksen luotettavuuden näkökulmasta. Työn aikana selvitettiin myös ilmanläpäisyprofiilin mittauksen mahdollisuutta superkalanteroidusta SC paperista. Työn kirjallisessa osassa käsiteltiin paperin huokoisuutta ja ilmanläpäisyä, huokoisuustasoon ja huokoisuus profiiliin vaikuttavia tekijöitä, ilmanläpäisevyyden merkitystä SC paperin valmistukselle ja SC paperin painettavuudelle sekä ilmanläpäisevyyden laboratorio- sekä online mittausta. Kirjallisessa osassa käsiteltiin myös Honeywellin uutta Poros ilmanläpäisysensoria. Työn kokeellisessa osassa tutkittiin ilmanläpäisyprofiilimittauksen luotettavuutta CD ja MD suunnassa sekä laboratorio- ja online-mittausten välisiä eroavaisuuksia ennen PK2 uusintaa. PK2 uusinnan jälkeen kokeellisessa osassa keskityttiin luotettavuuden varmentamiseen CD ja MD suunnassa sekä kartoittamaan tekijöitä, jotka aiheuttivat pieniä tasoeroja mittausten välillä. Mittaukset todettiin luotettaviksi ja niiden pohjalta suoritettiin mitattujen online profiilien välisiä vertailuja. Ilmanläpäisyprofiililla todettiin olevan positiivinen korrelaatio neliömassaprofiilin ja kosteusprofiilin kanssa sekä negatiivinen korrelaatio tuhkaprofiilin kanssa. PK2 uusinnan yhteydessä tehtiin koeajoja, jotka liittyivät laadunoptimointiin viira- ja puristinosalla. Koeajoissa tutkittujen asioiden lisäksi tutkittiin muutettujen parametrien vaikutusta ilmanläpäisyprofiiliin. Höyrylaatikon vaikutusta ilmanläpäisyprofiiliin tutkittiin säätöjen virityksen yhteydessä.
Resumo:
The aim of this thesis is to utilize the technology developed at LUT and to provide an easy tool for high-speed solid-rotor induction machine preliminary design. Computer aided design tool MathCAD has been chosen as the environment for realizing the calculation program. Four versions of the design program have been made depending on the motor rotor type. The first rotor type is an axially slitted solid-rotor with steel end rings. The next one is an axially slitted solid-rotor with copper end rings. The third machine type is a solid rotor with deep, rectangular copper bars and end rings (squirrel cage). And the last one is a solid-rotor with round copper bars and end rings (squirrel cage). Each type of rotor has its own specialties but a general thread of design is common. This paper follows the structure of the calculating program and explains some features and formulas. The attention is concentrated on the difference between laminated and solid-rotor machine design principles. There is no deep analysis of the calculation ways are presented. References for all solution methods appearing during the design procedure are given for more detailed studying. This thesis pays respect to the latest innovations in solid-rotor machines theory. Rotor ends’ analytical calculation follows the latest knowledge in this field. Correction factor for adjusting the rotor impedance is implemented. The purpose of the created design program is to calculate the preliminary dimensions of the machine according to initial data. Obtained results are not recommended for exact machine development. Further more detailed design should be done in a finite element method application. Hence, this thesis is a practical tool for the prior evaluating of the high-speed machine with different solid-rotor types parameters.
Resumo:
Tarkastelen tutkielmassani Dan Simmonsin kaksiosaista tieteisfiktioteosta, joka koostuu romaaneista Hyperion ja The Fall of Hyperion. Keskityn teoksissa esiintyvään Shrike-hirviöön, joka edustaa ihmiskunnan pelkäämää potentiaalista konfliktia ihmisten ja koneiden välillä. Pelko ja konflikti ovat keskeisiä teemoja paitsi tieteisfiktiossa, myös hirviöteoksissa yleensä, ja näiden kahden käyttö samassa kertomuksessa luo otolliset edellytykset nyky-yhteiskunnan ahdistusten kuvaamiseen. Hirviöitä ja tieteisfiktiota on tätä nykyä tutkittu melko laajalti, mutta Shrike on aiemmin jäänyt vähälle huomiolle. Lähtökohtaisen teoreettisen viitekehyksen tutkimukselleni ovat luoneet Jeffrey Cohenin Monster Theory: Reading Culture, Stephen Asman On Monsters: An Unnatural History of Our Worst Fears sekä Holly Lynn Baumgartnerin ja Roger Davisin At the Interface: Hosting the Monster. Teoksista kokoamani hirviöteorian kautta tarkastelen sitä, miten Shriken puoliksi orgaaninen ja puoliksi keinotekoinen keho heijastaa niitä romaaneissa esiintyviä osa-alueita, joista tulevaisuudenpelko ja ihmisten ja koneiden väliseen konfliktin uhka koostuu. Koska Shrike on puoliksi orgaaninen ja puoliksi keinotekoinen, se on näiden ominaisuuksien kynnyksellä; tässä risteytyneessä kehossa yhdistyvät molemmat ääripäät, jolloin tämä keho myös symboloi osapuolten välistä konfliktia. Konfliktin lisäksi Shrike ilmentää niitä vastakkaisuuksia, joista ihmisten ja koneiden välisen konfliktin pelko rakentuu: itseyttä ja toiseutta, houkuttelevuutta ja luotaantyöntävyyttä, menneisyyttä ja tulevaisuutta sekä utopiaa ja dystopiaa.
Resumo:
This study examines information security as a process (information securing) in terms of what it does, especially beyond its obvious role of protector. It investigates concepts related to ‘ontology of becoming’, and examines what it is that information securing produces. The research is theory driven and draws upon three fields: sociology (especially actor-network theory), philosophy (especially Gilles Deleuze and Félix Guattari’s concept of ‘machine’, ‘territory’ and ‘becoming’, and Michel Serres’s concept of ‘parasite’), and information systems science (the subject of information security). Social engineering (used here in the sense of breaking into systems through non-technical means) and software cracker groups (groups which remove copy protection systems from software) are analysed as examples of breaches of information security. Firstly, the study finds that information securing is always interruptive: every entity (regardless of whether or not it is malicious) that becomes connected to information security is interrupted. Furthermore, every entity changes, becomes different, as it makes a connection with information security (ontology of becoming). Moreover, information security organizes entities into different territories. However, the territories – the insides and outsides of information systems – are ontologically similar; the only difference is in the order of the territories, not in the ontological status of entities that inhabit the territories. In other words, malicious software is ontologically similar to benign software; they both are users in terms of a system. The difference is based on the order of the system and users: who uses the system and what the system is used for. Secondly, the research shows that information security is always external (in the terms of this study it is a ‘parasite’) to the information system that it protects. Information securing creates and maintains order while simultaneously disrupting the existing order of the system that it protects. For example, in terms of software itself, the implementation of a copy protection system is an entirely external addition. In fact, this parasitic addition makes software different. Thus, information security disrupts that which it is supposed to defend from disruption. Finally, it is asserted that, in its interruption, information security is a connector that creates passages; it connects users to systems while also creating its own threats. For example, copy protection systems invite crackers and information security policies entice social engineers to use and exploit information security techniques in a novel manner.
Resumo:
Coronary artery disease (CAD) is a worldwide leading cause of death. The standard method for evaluating critical partial occlusions is coronary arteriography, a catheterization technique which is invasive, time consuming, and costly. There are noninvasive approaches for the early detection of CAD. The basis for the noninvasive diagnosis of CAD has been laid in a sequential analysis of the risk factors, and the results of the treadmill test and myocardial perfusion scintigraphy (MPS). Many investigators have demonstrated that the diagnostic applications of MPS are appropriate for patients who have an intermediate likelihood of disease. Although this information is useful, it is only partially utilized in clinical practice due to the difficulty to properly classify the patients. Since the seminal work of Lotfi Zadeh, fuzzy logic has been applied in numerous areas. In the present study, we proposed and tested a model to select patients for MPS based on fuzzy sets theory. A group of 1053 patients was used to develop the model and another group of 1045 patients was used to test it. Receiver operating characteristic curves were used to compare the performance of the fuzzy model against expert physician opinions, and showed that the performance of the fuzzy model was equal or superior to that of the physicians. Therefore, we conclude that the fuzzy model could be a useful tool to assist the general practitioner in the selection of patients for MPS.
Resumo:
Narrative therapy is a postmodern therapy that takes the position that people create self-narratives to make sense of their experiences. To date, narrative therapy has compiled virtually no quantitative and very little qualitative research, leaving gaps in almost all areas of process and outcome. White (2006a), one of the therapy's founders, has recently utilized Vygotsky's (1934/1987) theories of the zone of proximal development (ZPD) and concept formation to describe the process of change in narrative therapy with children. In collaboration with the child client, the narrative therapist formalizes therapeutic concepts and submits them to increasing levels of generalization to create a ZPD. This study sought to determine whether the child's development proceeds through the stages of concept formation over the course of a session, and whether therapists' utterances scaffold this movement. A sequential analysis was used due to its unique ability to measure dynamic processes in social interactions. Stages of concept formation and scaffolding were coded over time. A hierarchical log-linear analysis was performed on the sequential data to develop a model of therapist scaffolding and child concept development. This was intended to determine what patterns occur and whether the stated intent of narrative therapy matches its actual process. In accordance with narrative therapy theory, the log-linear analysis produced a final model with interactions between therapist and child utterances, and between both therapist and child utterances and time. Specifically, the child and youth participants in therapy tended to respond to therapist scaffolding at the corresponding level of concept formation. Both children and youth and therapists also tended to move away from earlier and toward later stages of White's scaffolding conversations map as the therapy session advanced. These findings provide support for White's contention that narrative therapists promote child development by scaffolding child concept formation in therapy.
Resumo:
We introduce a procedure to infer the repeated-game strategies that generate actions in experimental choice data. We apply the technique to set of experiments where human subjects play a repeated Prisoner's Dilemma. The technique suggests that two types of strategies underly the data.
Resumo:
This paper highlights the prediction of learning disabilities (LD) in school-age children using rough set theory (RST) with an emphasis on application of data mining. In rough sets, data analysis start from a data table called an information system, which contains data about objects of interest, characterized in terms of attributes. These attributes consist of the properties of learning disabilities. By finding the relationship between these attributes, the redundant attributes can be eliminated and core attributes determined. Also, rule mining is performed in rough sets using the algorithm LEM1. The prediction of LD is accurately done by using Rosetta, the rough set tool kit for analysis of data. The result obtained from this study is compared with the output of a similar study conducted by us using Support Vector Machine (SVM) with Sequential Minimal Optimisation (SMO) algorithm. It is found that, using the concepts of reduct and global covering, we can easily predict the learning disabilities in children
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.
Resumo:
The dataflow model of computation exposes and exploits parallelism in programs without requiring programmer annotation; however, instruction- level dataflow is too fine-grained to be efficient on general-purpose processors. A popular solution is to develop a "hybrid'' model of computation where regions of dataflow graphs are combined into sequential blocks of code. I have implemented such a system to allow the J-Machine to run Id programs, leaving exposed a high amount of parallelism --- such as among loop iterations. I describe this system and provide an analysis of its strengths and weaknesses and those of the J-Machine, along with ideas for improvement.
Resumo:
In most classical frameworks for learning from examples, it is assumed that examples are randomly drawn and presented to the learner. In this paper, we consider the possibility of a more active learner who is allowed to choose his/her own examples. Our investigations are carried out in a function approximation setting. In particular, using arguments from optimal recovery (Micchelli and Rivlin, 1976), we develop an adaptive sampling strategy (equivalent to adaptive approximation) for arbitrary approximation schemes. We provide a general formulation of the problem and show how it can be regarded as sequential optimal recovery. We demonstrate the application of this general formulation to two special cases of functions on the real line 1) monotonically increasing functions and 2) functions with bounded derivative. An extensive investigation of the sample complexity of approximating these functions is conducted yielding both theoretical and empirical results on test functions. Our theoretical results (stated insPAC-style), along with the simulations demonstrate the superiority of our active scheme over both passive learning as well as classical optimal recovery. The analysis of active function approximation is conducted in a worst-case setting, in contrast with other Bayesian paradigms obtained from optimal design (Mackay, 1992).