94 resultados para SIFT
Resumo:
The use of image processing techniques to assess the performance of airport landing lighting using images of it collected from an aircraft-mounted camera is documented. In order to assess the performance of the lighting, it is necessary to uniquely identify each luminaire within an image and then track the luminaires through the entire sequence and store the relevant information for each luminaire, that is, the total number of pixels that each luminaire covers and the total grey level of these pixels. This pixel grey level can then be used for performance assessment. The authors propose a robust model-based (MB) featurematching technique by which the performance is assessed. The development of this matching technique is the key to the automated performance assessment of airport lighting. The MB matching technique utilises projective geometry in addition to accurate template of the 3D model of a landing-lighting system. The template is projected onto the image data and an optimum match found, using nonlinear least-squares optimisation. The MB matching software is compared with standard feature extraction and tracking techniques known within the community, these being the Kanade–Lucus–Tomasi (KLT) and scaleinvariant feature transform (SIFT) techniques. The new MB matching technique compares favourably with the SIFT and KLT feature-tracking alternatives. As such, it provides a solid foundation to achieve the central aim of this research which is to automatically assess the performance of airport lighting.
Resumo:
En este estudio se evalúa el rendimiento de los métodos de Bag-of-Visualterms (BOV) para la clasificación automática de imágenes digitales de la base de datos del artista Miquel Planas. Estas imágenes intervienen en la ideación y diseño de su producción escultórica. Constituye un interesante desafío dada la dificultad de la categorización de escenas cuando éstas difieren más por los contenidos semánticos que por los objetos que contienen. Hemos empleado un método de reconocimiento basado en Kernels introducido por Lazebnik, Schmid y Ponce en 2006. Los resultados son prometedores, en promedio, la puntuación del rendimiento es aproximadamente del 70%. Los experimentos sugieren que la categorización automática de imágenes basada en métodos de visión artificial puede proporcionar principios objetivos en la catalogación de imágenes y que los resultados obtenidos pueden ser aplicados en diferentes campos de la creación artística.
Resumo:
Increasingly more applications in computer vision employ interest points. Algorithms like SIFT and SURF are all based on partial derivatives of images smoothed with Gaussian filter kemels. These algorithrns are fast and therefore very popular.
Resumo:
The underground scenarios are one of the most challenging environments for accurate and precise 3d mapping where hostile conditions like absence of Global Positioning Systems, extreme lighting variations and geometrically smooth surfaces may be expected. So far, the state-of-the-art methods in underground modelling remain restricted to environments in which pronounced geometric features are abundant. This limitation is a consequence of the scan matching algorithms used to solve the localization and registration problems. This paper contributes to the expansion of the modelling capabilities to structures characterized by uniform geometry and smooth surfaces, as is the case of road and train tunnels. To achieve that, we combine some state of the art techniques from mobile robotics, and propose a method for 6DOF platform positioning in such scenarios, that is latter used for the environment modelling. A visual monocular Simultaneous Localization and Mapping (MonoSLAM) approach based on the Extended Kalman Filter (EKF), complemented by the introduction of inertial measurements in the prediction step, allows our system to localize himself over long distances, using exclusively sensors carried on board a mobile platform. By feeding the Extended Kalman Filter with inertial data we were able to overcome the major problem related with MonoSLAM implementations, known as scale factor ambiguity. Despite extreme lighting variations, reliable visual features were extracted through the SIFT algorithm, and inserted directly in the EKF mechanism according to the Inverse Depth Parametrization. Through the 1-Point RANSAC (Random Sample Consensus) wrong frame-to-frame feature matches were rejected. The developed method was tested based on a dataset acquired inside a road tunnel and the navigation results compared with a ground truth obtained by post-processing a high grade Inertial Navigation System and L1/L2 RTK-GPS measurements acquired outside the tunnel. Results from the localization strategy are presented and analyzed.
Resumo:
Lors d'une intervention conversationnelle, le langage est supporté par une communication non-verbale qui joue un rôle central dans le comportement social humain en permettant de la rétroaction et en gérant la synchronisation, appuyant ainsi le contenu et la signification du discours. En effet, 55% du message est véhiculé par les expressions faciales, alors que seulement 7% est dû au message linguistique et 38% au paralangage. L'information concernant l'état émotionnel d'une personne est généralement inférée par les attributs faciaux. Cependant, on ne dispose pas vraiment d'instruments de mesure spécifiquement dédiés à ce type de comportements. En vision par ordinateur, on s'intéresse davantage au développement de systèmes d'analyse automatique des expressions faciales prototypiques pour les applications d'interaction homme-machine, d'analyse de vidéos de réunions, de sécurité, et même pour des applications cliniques. Dans la présente recherche, pour appréhender de tels indicateurs observables, nous essayons d'implanter un système capable de construire une source consistante et relativement exhaustive d'informations visuelles, lequel sera capable de distinguer sur un visage les traits et leurs déformations, permettant ainsi de reconnaître la présence ou absence d'une action faciale particulière. Une réflexion sur les techniques recensées nous a amené à explorer deux différentes approches. La première concerne l'aspect apparence dans lequel on se sert de l'orientation des gradients pour dégager une représentation dense des attributs faciaux. Hormis la représentation faciale, la principale difficulté d'un système, qui se veut être général, est la mise en œuvre d'un modèle générique indépendamment de l'identité de la personne, de la géométrie et de la taille des visages. La démarche qu'on propose repose sur l'élaboration d'un référentiel prototypique à partir d'un recalage par SIFT-flow dont on démontre, dans cette thèse, la supériorité par rapport à un alignement conventionnel utilisant la position des yeux. Dans une deuxième approche, on fait appel à un modèle géométrique à travers lequel les primitives faciales sont représentées par un filtrage de Gabor. Motivé par le fait que les expressions faciales sont non seulement ambigües et incohérentes d'une personne à une autre mais aussi dépendantes du contexte lui-même, à travers cette approche, on présente un système personnalisé de reconnaissance d'expressions faciales, dont la performance globale dépend directement de la performance du suivi d'un ensemble de points caractéristiques du visage. Ce suivi est effectué par une forme modifiée d'une technique d'estimation de disparité faisant intervenir la phase de Gabor. Dans cette thèse, on propose une redéfinition de la mesure de confiance et introduisons une procédure itérative et conditionnelle d'estimation du déplacement qui offrent un suivi plus robuste que les méthodes originales.
Resumo:
La vidéosurveillance a pour objectif principal de protéger les personnes et les biens en détectant tout comportement anormal. Ceci ne serait possible sans la détection de mouvement dans l’image. Ce processus complexe se base le plus souvent sur une opération de soustraction de l’arrière-plan statique d’une scène sur l’image. Mais il se trouve qu’en vidéosurveillance, des caméras sont souvent en mouvement, engendrant ainsi, un changement significatif de l’arrière-plan; la soustraction de l’arrière-plan devient alors problématique. Nous proposons dans ce travail, une méthode de détection de mouvement et particulièrement de chutes qui s’affranchit de la soustraction de l’arrière-plan et exploite la rotation de la caméra dans la détection du mouvement en utilisant le calcul homographique. Nos résultats sur des données synthétiques et réelles démontrent la faisabilité de cette approche.
Resumo:
We present a new method to perform reliable matching between different images. This method exploits a projective invariant property between concentric circles and the corresponding projected ellipses to find complete region correspondences centered on interest points. The method matches interest points allowing for a full perspective transformation and exploiting all the available luminance information in the regions. Experiments have been conducted on many different data sets to compare our approach to SIFT local descriptors. The results show the new method offers increased robustness to partial visibility, object rotation in depth, and viewpoint angle change.
Resumo:
We present a new approach to model and classify breast parenchymal tissue. Given a mammogram, first, we will discover the distribution of the different tissue densities in an unsupervised manner, and second, we will use this tissue distribution to perform the classification. We achieve this using a classifier based on local descriptors and probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature. We studied the influence of different descriptors like texture and SIFT features at the classification stage showing that textons outperform SIFT in all cases. Moreover we demonstrate that pLSA automatically extracts meaningful latent aspects generating a compact tissue representation based on their densities, useful for discriminating on mammogram classification. We show the results of tissue classification over the MIAS and DDSM datasets. We compare our method with approaches that classified these same datasets showing a better performance of our proposal
Resumo:
We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos
Resumo:
A visual SLAM system has been implemented and optimised for real-time deployment on an AUV equipped with calibrated stereo cameras. The system incorporates a novel approach to landmark description in which landmarks are local sub maps that consist of a cloud of 3D points and their associated SIFT/SURF descriptors. Landmarks are also sparsely distributed which simplifies and accelerates data association and map updates. In addition to landmark-based localisation the system utilises visual odometry to estimate the pose of the vehicle in 6 degrees of freedom by identifying temporal matches between consecutive local sub maps and computing the motion. Both the extended Kalman filter and unscented Kalman filter have been considered for filtering the observations. The output of the filter is also smoothed using the Rauch-Tung-Striebel (RTS) method to obtain a better alignment of the sequence of local sub maps and to deliver a large-scale 3D acquisition of the surveyed area. Synthetic experiments have been performed using a simulation environment in which ray tracing is used to generate synthetic images for the stereo system
Resumo:
El trastorno de hiperactividad y déficit de atención (THDA), es definido clínicamente como una alteración en el comportamiento, caracterizada por inatención, hiperactividad e impulsividad. Estos aspectos son clasificados en tres subtipos, que son: Inatento, hiperactivo impulsivo y mixto. Clínicamente se describe un espectro amplio que incluye desordenes académicos, trastornos de aprendizaje, déficit cognitivo, trastornos de conducta, personalidad antisocial, pobres relaciones interpersonales y aumento de la ansiedad, que pueden continuar hasta la adultez. A nivel global se ha estimado una prevalencia entre el 1% y el 22%, con amplias variaciones, dadas por la edad, procedencia y características sociales. En Colombia, se han realizado estudios en Bogotá y Antioquia, que han permitido establecer una prevalencia del 5% y 15%, respectivamente. La causa específica no ha sido totalmente esclarecida, sin embargo se ha calculado una heredabilidad cercana al 80% en algunas poblaciones, demostrando el papel fundamental de la genética en la etiología de la enfermedad. Los factores genéticos involucrados se relacionan con cambios neuroquímicos de los sistemas dopaminérgicos, serotoninérgicos y noradrenérgicos, particularmente en los sistemas frontales subcorticales, corteza cerebral prefrontal, en las regiones ventral, medial, dorsolateral y la porción anterior del cíngulo. Basados en los datos de estudios previos que sugieren una herencia poligénica multifactorial, se han realizado esfuerzos continuos en la búsqueda de genes candidatos, a través de diferentes estrategias. Particularmente los receptores Alfa 2 adrenérgicos, se encuentran en la corteza cerebral, cumpliendo funciones de asociación, memoria y es el sitio de acción de fármacos utilizados comúnmente en el tratamiento de este trastorno, siendo esta la principal evidencia de la asociación de este receptor con el desarrollo del THDA. Hasta la fecha se han descrito más de 80 polimorfismos en el gen (ADRA2A), algunos de los cuales se han asociado con la entidad. Sin embargo, los resultados son controversiales y varían según la metodología diagnóstica empleada y la población estudiada, antecedentes y comorbilidades. Este trabajo pretende establecer si las variaciones en la secuencia codificante del gen ADRA2A, podrían relacionarse con el fenotipo del Trastorno de Hiperactividad y el Déficit de Atención.
Resumo:
L'increment de bases de dades que cada vegada contenen imatges més difícils i amb un nombre més elevat de categories, està forçant el desenvolupament de tècniques de representació d'imatges que siguin discriminatives quan es vol treballar amb múltiples classes i d'algorismes que siguin eficients en l'aprenentatge i classificació. Aquesta tesi explora el problema de classificar les imatges segons l'objecte que contenen quan es disposa d'un gran nombre de categories. Primerament s'investiga com un sistema híbrid format per un model generatiu i un model discriminatiu pot beneficiar la tasca de classificació d'imatges on el nivell d'anotació humà sigui mínim. Per aquesta tasca introduïm un nou vocabulari utilitzant una representació densa de descriptors color-SIFT, i desprès s'investiga com els diferents paràmetres afecten la classificació final. Tot seguit es proposa un mètode par tal d'incorporar informació espacial amb el sistema híbrid, mostrant que la informació de context es de gran ajuda per la classificació d'imatges. Desprès introduïm un nou descriptor de forma que representa la imatge segons la seva forma local i la seva forma espacial, tot junt amb un kernel que incorpora aquesta informació espacial en forma piramidal. La forma es representada per un vector compacte obtenint un descriptor molt adequat per ésser utilitzat amb algorismes d'aprenentatge amb kernels. Els experiments realitzats postren que aquesta informació de forma te uns resultats semblants (i a vegades millors) als descriptors basats en aparença. També s'investiga com diferents característiques es poden combinar per ésser utilitzades en la classificació d'imatges i es mostra com el descriptor de forma proposat juntament amb un descriptor d'aparença millora substancialment la classificació. Finalment es descriu un algoritme que detecta les regions d'interès automàticament durant l'entrenament i la classificació. Això proporciona un mètode per inhibir el fons de la imatge i afegeix invariança a la posició dels objectes dins les imatges. S'ensenya que la forma i l'aparença sobre aquesta regió d'interès i utilitzant els classificadors random forests millora la classificació i el temps computacional. Es comparen els postres resultats amb resultats de la literatura utilitzant les mateixes bases de dades que els autors Aixa com els mateixos protocols d'aprenentatge i classificació. Es veu com totes les innovacions introduïdes incrementen la classificació final de les imatges.
Resumo:
Background Dermatosparaxis (Ehlers–Danlos syndrome in humans) is characterized by extreme fragility of the skin. It is due to the lack of mature collagen caused by a failure in the enzymatic processing of procollagen I. We investigated the condition in a commercial sheep flock. Hypothesis/Objectives Mutations in the ADAM metallopeptidase with thrombospondin type 1 motif, 2 (ADAMTS2) locus, are involved in the development of dermatosparaxis in humans, cattle and the dorper sheep breed; consequently, this locus was investigated in the flock. Animals A single affected lamb, its dam, the dam of a second affected lamb and the rams in the flock were studied. Methods DNA was purified from blood, PCR primers were used to detect parts of the ADAMS2 gene and nucleotide sequencing was performed using Sanger's procedure. Skin samples were examined using standard histology procedures. Results A missense mutation was identified in the catalytic domain of ADAMTS2. The mutation is predicted to cause the substitution in the mature ADAMTS2 of a valine molecule by a methionine molecule (V15M) affecting the catalytic domain of the enzyme. Both the ‘sorting intolerant from tolerant’ (SIFT) and the PolyPhen-2 methodologies predicted a damaging effect for the mutation. Three-dimensional modelling suggested that this mutation may alter the stability of the protein folding or distort the structure, causing the protein to malfunction. Conclusions and clinical importance Detection of the mutation responsible for the pathology allowed us to remove the heterozygote ram, thus preventing additional cases in the flock.
Resumo:
This paper proposes a parallel hardware architecture for image feature detection based on the Scale Invariant Feature Transform algorithm and applied to the Simultaneous Localization And Mapping problem. The work also proposes specific hardware optimizations considered fundamental to embed such a robotic control system on-a-chip. The proposed architecture is completely stand-alone; it reads the input data directly from a CMOS image sensor and provides the results via a field-programmable gate array coupled to an embedded processor. The results may either be used directly in an on-chip application or accessed through an Ethernet connection. The system is able to detect features up to 30 frames per second (320 x 240 pixels) and has accuracy similar to a PC-based implementation. The achieved system performance is at least one order of magnitude better than a PC-based solution, a result achieved by investigating the impact of several hardware-orientated optimizations oil performance, area and accuracy.
Resumo:
AIRES, Kelson R. T. ; ARAÚJO, Hélder J. ; MEDEIROS, Adelardo A. D. . Plane Detection from Monocular Image Sequences. In: VISUALIZATION, IMAGING AND IMAGE PROCESSING, 2008, Palma de Mallorca, Spain. Proceedings..., Palma de Mallorca: VIIP, 2008