999 resultados para Pulmonary circulation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT BACKGROUND: Chronic mountain sickness (CMS) is a major public health problem characterized by exaggerated hypoxemia and erythrocytosis. In more advanced stages, these patients often present functional and structural changes of the pulmonary circulation, but there is little information on the systemic circulation. In patients suffering from diseases associated with chronic hypoxemia at low altitude, systemic vascular function is altered. We hypothesized that patients with CMS display systemic vascular dysfunction that may predispose them to increased systemic cardiovascular morbidity. METHODS: To test this hypothesis, we assessed systemic endothelial function (by flow- mediated dilation, FMD), arterial stiffness and carotid intima-media thickness and arterial oxygenation (SaO(2)) in 23 patients with CMS without additional classical cardiovascular risk factors and 27 age-matched healthy mountain dwellers born and permanently living at 3600 m. For some analyses subjects were classified according to baseline SaO(2) quartiles; FMD of the highest quartile subgroup (SaO(2) ≥90%) was used as reference value for post-hoc comparisons. RESULTS: Patients with CMS displayed marked systemic vascular dysfunction, as evidenced by impaired FMD (4.6±1.2 vs. 7.6±1.9%, CMS vs. controls, P<0.0001), greater pulse wave velocity (10.6±2.1 vs. 8.4±1.0 m/s, P<0.001) and carotid intima-media thickness (690±120 vs. 570±110 μm, P=0.001). A positive relationship existed between SaO(2) and FMD (r=0.62, P<0.0001). Oxygen inhalation improved (P<0.001), but did not normalize FMD in patients with CMS; whereas it normalized FMD in hypoxemic controls (SaO(2) <90%) and had no detectable effect in normoxemic (SaO(2) ≥90%) control subjects. CONCLUSIONS: Patients with CMS display marked systemic vascular dysfunction. Structural and functional alterations contribute to this problem that may predispose these patients to premature cardiovascular disease. Clinical Trials Gov Registration # NCT01182792.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES In extreme scenarios, such as hyperacute rejection of heart transplant, an urgent heart explantation might be necessary. The aim of this experimental study was to determine the feasibility and to improve the haemodynamics of a venoarterial cardiopulmonary bypass after cardiectomy. METHODS A venoarterial cardiopulmonary bypass was established in seven calves (56.4 ± 7 kg) by the transjugular insertion to the caval axis of a self-expanding cannula, with a carotid artery return. After baseline measurements (A), ventricular fibrillation was induced (B), great arteries were clamped (C), the heart was excised and the right and left atria remnants, containing the pulmonary veins, were sutured together leaving an atrial septal defect over the cannula in the caval axis (D). Measurements were taken with the pulmonary artery clamped and declamped. RESULTS Initial pump flow was 4.16 ± 0.75 l/min dropping to 2.9 ± 0.63 l/min (P(AB )< 0.001) 10 min after induction of ventricular fibrillation. After cardiectomy with the pulmonary artery clamped, the pump flow increased non-significantly to 3.20 ± 0.78 l/min. After declamping, the flow significantly increased close to baseline levels (3.61 ± 0.73 l/min, P(DB )= 0.009, P(DC )= 0.017), supporting the notion that full cardiopulmonary bypass in acardia is feasible only if adequate drainage of pulmonary circulation is assured to avoid pulmonary congestion and loss of volume from the left-to-right shunt of bronchial vessels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs. © 2014 S. Karger AG, Basel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

About 30 million people live above 2500 m in the Andean Mountains of South America. Among them are 5.5 million Aymaras, an ethnic group with its own language, living on the altiplano of Bolivia, Peru, and northern Chile at altitudes of up to 4400 m. In this high altitude region traces of human population go back for more than 2000 years with constant evolutionary pressure on its residents for genetic adaptation to high altitude. Aymaras as the assumed direct descendents of the ancient cultures living in this region were the focus of much research interest during the last decades and several distinctive adaptation patterns to life at high altitude have been described in this ethnic group. The aim of this article was to review the physiology and pathophysiology of circulatory adaptation and maladaptation to longtime altitude exposure in Aymaras and Caucasians.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The available data suggests that hypotension caused by Hg2+ administration may be produced by a reduction of cardiac contractility or by cholinergic mechanisms. The hemodynamic effects of an intravenous injection of HgCl2 (5 mg/kg) were studied in anesthetized rats (N = 12) by monitoring left and right ventricular (LV and RV) systolic and diastolic pressures for 120 min. After HgCl2 administration the LV systolic pressure decreased only after 40 min (99 ± 3.3 to 85 ± 8.8 mmHg at 80 min). However, RV systolic pressure increased, initially slowly but faster after 30 min (25 ± 1.8 to 42 ± 1.6 mmHg at 80 min). Both right and left diastolic pressures increased after HgCl2 treatment, suggesting the development of diastolic ventricular dysfunction. Since HgCl2 could be increasing pulmonary vascular resistance, isolated lungs (N = 10) were perfused for 80 min with Krebs solution (continuous flow of 10 ml/min) containing or not 5 µM HgCl2. A continuous increase in pulmonary vascular resistance was observed, suggesting the direct effect of Hg2+ on the pulmonary vessels (12 ± 0.4 to 29 ± 3.2 mmHg at 30 min). To examine the interactions of Hg2+ and changes in cholinergic activity we analyzed the effects of acetylcholine (Ach) on mean arterial blood pressure (ABP) in anesthetized rats (N = 9) before and after Hg2+ treatment (5 mg/kg). Using the same amount and route used to study the hemodynamic effects we also examined the effects of Hg2+ administration on heart and plasma cholinesterase activity (N = 10). The in vivo hypotensive response to Ach (0.035 to 10.5 µg) was reduced after Hg2+ treatment. Cholinesterase activity (µM h-1 mg protein-1) increased in heart and plasma (32 and 65%, respectively) after Hg2+ treatment. In conclusion, the reduction in ABP produced by Hg2+ is not dependent on a putative increase in cholinergic activity. HgCl2 mainly affects cardiac function. The increased pulmonary vascular resistance and cardiac failure due to diastolic dysfunction of both ventricles are factors that might contribute to the reduction of cardiac output and the fall in arterial pressure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le système cardiovasculaire est composé d'un cœur qui pompe régulièrement le sang à travers des artères afin d'alimenter tous les tissus corporels en oxygène et nutriments qui leur sont nécessaires. Une caractéristique particulière de ce système est son aspect fermé, où le sang fait un cycle constant commençant par le ventricule gauche, allant vers tous les tissus corporels, revenant vers le cœur et le ventricule droit, étant propulsé vers la circulation pulmonaire en retournant au ventricule gauche. L'insuffisance cardiaque est alors une incapacité du cœur à effectuer sa tâche de pomper le sang efficacement. Une série d'ajustements sont alors enclenchés pour rétablir un débit sanguin adéquat; cette réponse systémique est principalement menée par le système rénine-angiotensine-aldostérone ainsi que par le système adrénergique. À court terme, le flot sanguin est rétabli et le métabolisme corporel continue comme si rien n'était, de telle sorte que, souvent ce stade passe inaperçu et les individus qui en sont affectés sont asymptomatiques. Cependant, le cœur doit alors fournir un effort constant supérieur et si la cause n'est pas résolue, la condition cardiaque se dégradera encore plus. Si tel est le cas, pour s'ajuster à cette nouvelle réalité, le cœur, comme tout muscle, deviendra plus massif et changera de conformation afin de répondre à sa nouvelle charge de travail. Cette transformation cardiaque est communément connue sous le terme de remodelage. Par contre, le remodelage cardiaque est délétère à long terme et entrave encore plus le cœur à bien effectuer sa tâche. Au fur et à mesure que la fonction cardiaque décline, les systèmes compensatoires persistent et s'intensifient; il y a alors établissement d'un cercle vicieux destructeur qui ne peut être renversé que par une transplantation cardiaque. Entre temps, des thérapies inhibant le système rénine-angiotensine-aldostérone et le système adrénergique se sont avérés très efficaces pour prolonger la survie, diminuer la mortalité, réduire les hospitalisations ainsi que soulager la symptomatologie associée à l'insuffisance cardiaque. Par contre, ces régimes thérapeutiques ne semblent pas induire une réponse positive chez tous les patients, de sorte que certains n'en retirent pas de bénéfices tangibles, tandis que d'autres éprouvent plusieurs difficultés à les tolérer. Suite à des analyses rétrospectives, surtout en comparant la réponse thérapeutique entre des populations de diverses ethnies, les variations génétiques, particulièrement les polymorphismes ayant le potentiel de moduler le mécanisme d'action de la pharmacothérapie, furent proposés comme responsables de cette variabilité dans la réponse aux médicaments. Certains ont aussi proposé que certains polymorphismes pourraient être considérés comme des facteurs de risque prédisposant à l'insuffisance cardiaque ou coupables de moduler sa progression en tant que facteurs aggravants ou atténuants. Avec de telles hypothèses proposées, plusieurs associations génétiques furent étudiées en commençant par des gènes directement impliqués dans la pathogénèse de cette maladie. Dans le cadre de cette thèse, nous allons revoir les diverses données disponibles dans la littérature au sujet de l'influence que peuvent avoir les divers polymorphismes impliqués dans la prédisposition, la progression et la pharmacogénétique de l'insuffisance cardiaque.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antecedentes El desarrollo de la hipertensión pulmonar en el recién nacido es una condición grave que supone un peligro para su vida. Se ha propuesto el uso del sildenafil como tratamiento para esta enfermedad, sin embargo no ha sido evaluada su eficacia a través de una revisión sistemática. Objetivos Determinar el efecto del sildenafil en el manejo de recién nacidos con diagnóstico de hipertensión pulmonar a través de la realización de una revisión sistemática de la literatura. Metodología Se planteó la realización de una revisión sistemática de la literatura. La búsqueda fue realizada a través de las bases de datos: Pubmed, Embase, LiLaCS y Cochrane library. Se incluyeron ensayos clínicos controlados y estudios de cohortes publicados en los idiomas inglés y español. Las variables cualitativas fueron estimadas como riesgos relativos o odds ratios con sus IC95%, las variables cualitativas como diferencias de promedios con sus IC95%. Resultados Se incluyeron 4 estudios en la revisión sistemática. Dos estudios compararon el sildenafil contra el placebo. El uso del sildenafil se relacionó con una menor mortalidad y mejoría en los parámetros ventilatorios. Conclusión: Es aconsejable el uso del sildenafil en el manejo de la hipertensión pulmonar en niños.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the expression pattern of cell adhesion molecules associated to transendothelial migration of leukocytes in different lung`s vascular compartments after administration of a magnetic fluid sample containing maghemite nanoparticles surface-coated with meso-2,3-dimercaptosuccinic acid. The analyses were conducted in mice 4 and 12 h after endovenous administration of the magnetic fluid in control mice. Firstly, the migratory activity of leukocytes after magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration was confirmed using broncho-alveolar lavage and light microscopy. Then, the expression of cell adhesion molecules in the lung`s vascular compartments was investigated by immunofluorescence microscopy of frozen sections, using antibodies against L-selectin, P-selectin, E-selectin, macrophage antigen-1, and leukocyte function associated antigen-1. L- and P-selectin showed similar pattern of expression in the pulmonary vasculature in animals treated with magnetic fluid and in the control group. In contrast, macrophage antigen-1 and leukocyte function associated antigen-1 were found in capillary only in animals treated with magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration. In addition, after magnetic fluid administration E-selectin was found in post-capillary sites. Our findings demonstrated that magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration exhibits modulation effects on expression patterns of E-selectin, macrophage antigen-1, and leukocyte function associated antigen-1 in the lung`s vascular compartments. These findings are very important in a strategy to reduce the potential toxicity of magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration for medical applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Incubation of heat-denatured plasma from the rattlesnake Crotalus atrox with trypsin generated a bradykinin (BK) that contained two amino acid substitutions (Arg(1) --> Val and Ser(6) --> Thr) compared with mammalian BK. Bolus intra-arterial injections of synthetic rattlesnake BK (0.01-10 nmol/kg) into the anesthetized rattlesnake, Crotalus durissus terrificus, produced a pronounced and concentration-dependent increase in systemic vascular conductance (Gsys). This caused a fall in systemic arterial blood pressure (Psys) and an increase in blood flow. Heart rate and stroke volume also increased. This primary response was followed by a significant rise in Psys and pronounced tachycardia (secondary response). Pretreatment with N-G-nitro-L-arginine methyl ester reduced the NK-induced systemic vasodilatation, indicating that the effect is mediated through increased NO synthesis. The tachycardia associated with the late primary and secondary response to BK was abolished with propranolol and the systemic vasodilatation produced in the primary phase was also significantly attenuated by pretreatment, indicating that the responses are caused, at least in part, by release of cathecholamines and subsequent stimulation of beta-adrenergic receptors. In contrast, the pulmonary circulation was relatively unresponsive to BK.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study investigates adrenergic regulation of the systemic and pulmonary circulations of the anaesthetised South American rattlesnake, Crotalus durissus. Haemodynamic measurements were made following bolus injections of adrenaline and adrenergic antagonists administered through a systemic arterial catheter. Adrenaline caused a marked systemic vasoconstriction that was abolished by phentolamine, indicating this response was mediated through alpha-adrenergic receptors. Injection of phentolamine gave rise to a pronounced vasodilatation (systemic conductance (G(sys)) more than doubled), while injection of propranolol caused a systemic vasoconstriction, pointing to a potent alpha-adrenergic, and a weaker beta-adrenergic tone in the systemic vasculature of Crotalus. Overall, the pulmonary vasculature was far less responsive to adrenergic stimulation than the systemic circulation. Adrenaline caused a small but non-significant pulmonary vasodilatation and there was tendency of reducing this dilatation after either phentolamine or propranolol. Injection of phentolamine increased pulmonary conductance (G(pul)), while injection of propranolol produced a small pulmonary constriction, indicating that alpha-adrenergic and beta-adrenergic receptors contribute to a basal regulation of the pulmonary vasculature. Our results suggest adrenergic regulation of the systemic vasculature, rather than the pultrionary, may be an important factor in the development of intracardiac shunts. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The roles that nitric oxide (NO) plays in the cardiovascular system of reptiles are reviewed, with particular emphasis on its effects on central vascular blood flows in the systemic and pulmonary circulations. New data is presented that describes the effects on hemodynamic variables in varanid lizards of exogenously administered NO via the nitric oxide donor sodium nitroprusside (SNP) and, preliminary data on the effects of SNP inhibition of nitric oxide synthase (NOS) by L-nitroarginine methyl ester (L-NAME). Furthermore. on hemodynamic variables in the tegu lizard are presented. The findings are compared with previously published data from Our laboratory on three other species of reptiles: pythons (Skovgaard, N., Galli, G., Taylor, E.W., Conlon, J.M., Wang.. T., 2005. Hemodynamic effects of python neuropeptide gamma in the anesthetized python, Python regius. Regul. Pept. 18, 15-26), rattlesnakes (Galli, G., Skovgaard, N., Abe, A.S., Taylor, E.W., Wang, T., 2005. The role of nitric oxide in the regulation of the systemic and the pulmonary vasculature of the rattlesnake, Crotalus durissus terrificus. J. Comp. Physiol. 175B, 201-208) and turtles (Crossley, D.A., Wang, T., Altimiras, J., 2000. Role of nitric oxide in the systemic and pulmonary circulation of anesthetized turtles (Trachemys scripta). J. Exp. Zool. 286, 683-689). These five species of reptiles possess different combinations of division of the heart and structural complexity of the lungs. Comparison of their responses to NO donors and NOS inhibitors may reveal whether the potential contribution of NO to vascular tone correlates with pulmonary complexity and/or with blood pressure. All existing studies oil reptiles have clearly established a potential role for NO in regulating vascular tone in the systemic circulation and NO may be important for maintaining basal systemic vascular tone in varanid lizards, pythons and turtles, through a continuous release of NO. In contrast., the pulmonary circulation is less responsive to NO donors or NOS inhibitors, and it was only in pythons and varanid lizards that the lungs responded to SNP. Both species have a functionally separated heart, so it is possible that NO may exert a larger role in species with low pulmonary blood pressures, irrespective of lung complexity. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic mountain sickness (CMS) is a major public health problem characterized by exaggerated hypoxemia and erythrocytosis. In more advanced stages, patients with CMS often present with functional and structural changes of the pulmonary circulation, but there is little information on the systemic circulation. In patients with diseases associated with chronic hypoxemia at low altitude, systemic vascular function is altered. We hypothesized that patients with CMS have systemic vascular dysfunction that may predispose them to increased systemic cardiovascular morbidity.