995 resultados para Protein extraction
Resumo:
Esta dissertação é composta por 5 artigos.
Resumo:
Salt use in meat products is changing. Consumers desire sea salt which may also contain trace metals and the government is demanding a reduction in sodium. Therefore a need exists to understand how varying impurity levels in salt affect meat quality. This study evaluated the effects of various salt preparations on lipid oxidation, sensory characteristics, protein extractability, and bind strength of ground turkey and pork. This study was a completely randomized design with 5 treatment groups and 6 replications in 2 species. Ground, turkey and pork meat was formulated into one hundred and fifty gram patties with sodium chloride (1%) containing varying amounts of metal impurities (copper, iron, and manganese). Samples were randomly assigned to frozen storage periods of 0, 3, 6, and 9 weeks. After storage, samples were packaged in PVC overwrap and stored under retail display for 5 days. Samples were evaluated for proximate analysis to ensure the fat content was similar for all of the starting material.Thiobarbituric acid reactive substances (TBARS) were determined on raw and cooked samples to evaluate lipid oxidation. A trained six member sensory panel evaluated the samples at each storage period for saltiness, off flavor, and oxidized odor. Break strength was conducted using a Texture Analyzer and compared with salt soluble proteins (increasing salt concentrations) to evaluate protein extractability characteristics. Statistical analyses were conducted using the MIXED procedure of SAS within repeated measures over time where appropriate. No significant differences were observed among the salt treatments for raw and cooked TBARS when the control group was removed (P>0.05). Sensory panelists detected increased levels of off flavor and oxidized odor over the entire storage duration. Less force was required to break the patties from the control group when compared with the salt treatments (P<0.05). As salt concentration increased salt-soluble protein extraction increased, but there was no effect of salt type. Overall, no meaningful statistical differences among the various salt treatments were observed for all of the parameters evaluated for turkey and pork. Salt at a 1% inclusion rate containing varying levels of copper, iron, and manganese impurities in ground turkey thigh meat and ground pork served as a prooxidant. However, if a meat processor uses a 1% inclusion rate of salt in turkey and pork regardless of impurities included, it is unlikely that differences in shelf life or protein functionality would be observed.
Resumo:
El estudio se llevó a cabo en el Laboratorio de Genética Molecular de la Universidad Nacional, Heredia, Costa Rica. Se utilizaron plantas acuáticas macrófitas de Lemna valdiviana y L. aequinoctialis previamente identificadas. Estas especies habitan en aguas ricas en sales disueltas y aguas servidas. Recientemente se les consideró como un indicador de la contaminación ocasionada por pesticidas y herbicidas en el agua. La composición proteica llega a niveles entre 38 y 43% de materia seca, importante para diversos usos. La extracción de proteínas totales, por medio de electroforesis discontinua en gel de poliacrilamida, se realizó en condiciones reductoras con SDS (SDS-PAGE). Los geles separadores empleados fueron al 8 y 10%, gel espaciador al 4% y la tinción se efectuó con azul commassie. Los diversos patrones proteicos reflejaron diferencias genéticas entre ambas especies que se pueden deber a las diferencias de hábitat y de reproducción.
Resumo:
A method is presented for the direct extraction of the recombinant protein Long-R-3-IGF-I from inclusion bodies located in the cytoplasm of intact Escherichia coli cells. Chemical treatment with 6M urea, 3 mM EDTA, and 20 mM dithiothreitol (DTT) at pH 9.0 proved an effective combination for extracting recombinant protein from intact cells. Comparable levels of Long-R-3-IGF-I were recovered by direct extraction as achieved by in vitro dissolution following mechanical disruption. However, the purity of directly extracted recombinant protein was lower due to contamination by bacterial cell components. The kinetics of direct extraction are described using a first-order equation with the time constant of 3 min. Urea appears important for permeabilization of the cell and dissolution of the inclusion body. Conversely, EDTA is involved in permeabilization of the cell wall and DTT enhances protein release. pH proved to be important with lower levels of protein release achieved at low pH values (
Resumo:
In previous parts of this study we developed procedures for the high-efficiency chemical extraction of soluble and insoluble protein from intact Escherichia coli cells. Although high yields were obtained, extraction of recombinant protein directly from cytoplasmic inclusion bodies led to low product purity due to coextraction of soluble contaminants. In this work, a two-stage procedure for the selective extraction of recombinant protein at high efficiency and high purity is reported. In the first stage, inclusion-body stability is promoted by the addition of 15 mM 2-hydroxyethyldisulfide (2-HEDS), also known as oxidized P-mercaptoethanol, to the permeabil ization buffer (6 M urea + 3 mM ethylenediaminetetra-acetate [EDTA]). 2-HEDS is an oxidizing agent believed to promote disulfide bond formation, rendering the inclusion body resistant to solubilization in 6 M urea. Contaminating proteins are separated from the inclusion-body fraction by centrifugation. in the second stage, disulfide bonds are readily eliminated by including reducing agent (20 mM dithiothreitol [DTT]) into the permeabilization buffer. Extraction using this selective two-stage process yielded an 81% (w/w) recovery of the recombinant protein Long-R-3-IGF-I from inclusion bodies located in the cytoplasm of intact E. coli, at a purity of 46% (w/w). This was comparable to that achieved by conventional extraction (mechanical disruption followed by centrifugation and solubilization). A pilot-scale procedure was also demonstrated using a stirred reactor and diafiltration. This is the first reported study that achieves both high extraction efficiency and selectivity by the chemical treatment of cytoplasmic inclusion bodies in intact bacterial cells. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Extraction of intracellular protein from Escherichia coli is traditionally achieved by mechanical disruption. A chemical treatment that destroys the integrity of the bacterial cell wall and could provide an alternative technique is examined in this study. Treatment with a combination of the chelating agent ethylenediaminetetraacetate (EDTA) (greater than 0.3 mM) and the chaotropic agent urea (6 M) is highly effective at releasing protein from uninduced E. coli. The 6 M urea in the presence of 3 mM EDTA can release cytoplasmic protein from both logarithmic-phase and stationary-phase E. coli cells at levels equivalent to mechanical disruption. The concentrations of the two chemical agents were the major variables affecting the maximum levels of protein release. Several minor variables and interactions were also identified. The kinetics of protein release is first order. For 2, 4, and 6 M urea with 3 mM EDTA, the time constant is approximately 2.5 min independent of urea concentration. Kinetics for 3 mM EDTA without urea is considerably slower, with a time constant of 12.3 min. (C) 1997 John Wiley & Sons, Inc.
Resumo:
In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals’ transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey’s biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention
Resumo:
The aim of this study was to evaluate the expression of osteocalcin protein during the alveolar bone healing process in rats. Twenty four rats were used in this study and, after anesthetic induction, they had their right upper incisors extracted. At 7, 14, 21 and 28 days after the tooth extraction, the animals were injected 4% formaldehyde. The histological tissue pieces were colored in hematoxilin and eosin and the immunohistochemistry reaction for osteocalcin was performed. At seven days lesser neoformed trabeculae bone and a small quantity of osteocalcin labeling were observed. At 14 and 21 days a larger quantity of neoformed trabeculae bone and higher osteocalcin values were detected. At 28 days the largest quantity of neoformed trabeculae bone and a decrease on the amount of osteocalcin immunolabelling were noticed. According to our results and considering the limits of the present study it is possible to conclude that a greater osteocalcin expression is observed at 14 and 21 days postoperatively, characterizing the periods when intense mineralization of the bone tissue occurs during the alveolar bone healing process.
Resumo:
Background Transformed cells of Escherichia coli DH5-α with pGFPuv, induced by IPTG (isopropyl-β-d-thiogalactopyranoside), express the green fluorescent protein (gfpuv) during growth phases. E. coli subjected to the combination of selective permeation by freezing/thawing/sonication cycles followed by the three-phase partitioning extraction (TPP) method were compared to the direct application of TPP to the same culture of E. coli on releasing gfpuv from the over-expressing cells. Material and Methods Cultures (37°C/100 rpm/ 24 h; μ = 0.99 h-1 - 1.10 h-1) of transformed (pGFP) Escherichia coli DH5-α, expressing the green fluorescent protein (gfpuv, absorbance at 394 nm and emission at 509 nm) were sonicated in successive intervals of sonication (25 vibrations/pulse) to determine the maximum amount of gfpuv released from the cells. For selective permeation, the transformed previously frozen (-75°C) cells were subjected to three freeze/thaw (-20°C/ 0.83°C/min) cycles interlaid by sonication (3 pulses/ 6 seconds/ 25 vibrations). The intracellular permeate with gfpuv in extraction buffer (TE) solution (25 mM Tris-HCl, pH 8.0, 1 mM β-mercaptoethanol β-ME, 0.1 mM PMSF) was subjected to the three-phase partitioning (TPP) method with t-butanol and 1.6 M ammonium sulfate. Sonication efficiency was verified on the application to the cells previously treated by the TPP method. The intra-cell releases were mixed and eluted through methyl HIC column with a buffer solution (10 mM Tris-HCl, 10 mM EDTA, pH 8.0). Results The sonication maximum released amount obtained from the cells was 327.67 μg gfpuv/mL (20.73 μg gfpuv/mg total proteins – BSA), after 9 min of treatment. Through the selective permeation by three repeated freezing/thawing/sonication cycles applied to the cells, a close content of 241.19 μg gfpuv/mL (29.74 μg gfpuv/mg BSA) was obtained. The specific mass range of gfpuv released from the same cultures, by the three-phase partitioning (TPP) method, in relation to total proteins, was higher, between 107.28 μg/mg and 135.10 μg/mg. Conclusions The selective permeation of gfpuv by freezing/thawing/sonication followed by TPP separation method was equivalent to the amount of gfpuv extracted from the cells directly by TPP; although selective permeation extracts showed better elution through the HIC column.
Resumo:
Nonalcoholic fatty liver disease is the most common of all liver diseases. The hepatic disposition [H-3]palmitate and its low-molecular-weight metabolites in perfused normal and steatotic rat liver were studied using the multiple indicator dilution technique and a physiologically based slow diffusion/bound pharmacokinetic model. The steatotic rat model was established by administration of 17alpha-ethynylestradiol to female Wistar rats. Serum biochemistry markers and histology of treated and normal animals were assessed and indicated the presence of steatosis in the treatment group. The steatotic group showed a significantly higher alanine aminotransferase-to-aspartate aminotransferase ratio, lower levels of liver fatty acid binding protein and cytochrome P-450, as well as microvesicular steatosis with an enlargement of sinusoidal space. Hepatic extraction for unchanged [H-3]palmitate and production of low-molecular-weight metabolites were found to be significantly decreased in steatotic animals. Pharmacokinetic analysis suggested that the reduced extraction and sequestration for palmitate and its metabolites was mainly attributed to a reduction in liver fatty acid binding protein in steatosis.
Resumo:
This paper proposes a novel framework of incorporating protein-protein interactions (PPI) ontology knowledge into PPI extraction from biomedical literature in order to address the emerging challenges of deep natural language understanding. It is built upon the existing work on relation extraction using the Hidden Vector State (HVS) model. The HVS model belongs to the category of statistical learning methods. It can be trained directly from un-annotated data in a constrained way whilst at the same time being able to capture the underlying named entity relationships. However, it is difficult to incorporate background knowledge or non-local information into the HVS model. This paper proposes to represent the HVS model as a conditionally trained undirected graphical model in which non-local features derived from PPI ontology through inference would be easily incorporated. The seamless fusion of ontology inference with statistical learning produces a new paradigm to information extraction.
Resumo:
BACKGROUND: The hydrolysis of hemicellulosic material can provide liquor with high xylose concentration (which can be used as a fermentation medium) and phenolic compounds (Phs), potentially immunostimulating compounds. However, these hydrolysates must be detoxified in order to remove the Phs that can act as inhibitors in bioconversions. RESULTS: Aqueous two-phase systems composed of thermoseparating copolymers were used for rice straw hydrolysate detoxification. The hydrolysis process was able to promote chemical breakdown of 85% of the total hemicellulose content, 14% of the cellulose, and 2% of the lignin. The hydrolysate obtained contained 19.7 g L-1 of xylose and several phenolic compounds, such as vanillin, vanillic acid, ferullic acid, etc. The phenolics extraction was studied as a function of copolymer molar mass (1100 g mol(-1), 2000 g mol(-1) and 2800 g mol(-1)), their percentages (from 5% to 50%) and Phs initial concentration. Phenolic compounds extraction of around 80% was obtained under the following conditions: 20% (w/w) and 35% (w/w) copolymer 1100 g mol-1, 35% (w/w) copolymer 2000 g mol(-1) and 35% (w/w) copolymer 2800 g mol(-1) at 25 degrees C. CONCLUSIONS: The results demonstrated the viability of this method for the removal of Phs from rice straw hydrolysate, which has potential uses in bioconversion processes. (c) 2007 Society of Chemical Industry.
Resumo:
The partitioning of Green Fluorescent Protein (GFP) in poly(ethylene glycol)/Na-poly(acrylate) aqueous two-phase systems (PEG/NaPA-ATPS) has been investigated. The aqueous two-phase systems are formed by mixing the polymers with a salt and a protein solution. The protein partitioning in the two-phase system was investigated at 25 degrees C. The concentration of the GFP was measured by fluorimetry. It was found that the partitioning of GFP depends on the salt type, pH and concentration of PEG. The data indicates that GFP partitions more strongly to the PEG phase in presence of Na2SO4 relative to NaCl. Furthermore, the GFP partitions more to the PEG phase at higher pH. The partition to the PEG phase is strongly favoured in systems with larger tie-line lengths (i.e. systems with higher polymer concentrations). The molecular weight of PEG is important since the partition coefficient (K) of GFP gradually decreases with increasing PEG size, from K ca. 300-400 for PEG 400 to K equal to 1.19 for PEG 8000. A separation process was developed where GFP was separated from a homogenate in two extraction steps: the GFP is first partitioned to the PEG phase in a PEG 3000/NaPA 8000 system containing 3 wt% Na2SO4, where the K value of GFP was 8. The GFP is then re-extracted to a salt phase formed by mixing the previous top-phase with a Na2SO4 solution. The K-value of GFP in this back-extraction was 0.22. The total recovery based on the start material was 74%. (c) 2008 Elsevier B.V. All rights reserved.