998 resultados para Paper mills -- Ontario -- Thorold
Resumo:
This report introduces the ENPI project called “EMIR - Exploitation of Municipal and Industrial Residues” which was executed in a co-operation between Lappeenranta University of Technology (LUT), Saint Petersburg State University of Economics (SPbSUE), Saint Petersburg State Technical University of Plant Polymers (SPbSTUPP) and industrial partners from both Leningrad Region (LR), Russia and Finland. The main targets of the research were to identify the possibilities for deinking sludge management scenarios in co-operation with partner companies, to compare the sustainability of the alternatives, and to provide recommendations for the companies in the Leningrad Region on how to best manage deinking sludge. During the literature review, 24 deinking sludge utilization possibilities were identified, the majority falling under material recovery. Furthermore, 11 potential utilizers of deinking sludge were found within the search area determined by the transportation cost. Each potential utilizer was directly contacted in order to establish cooperation for deinking sludge utilization. Finally, four companies, namely, “Finnsementti” – a cement plant in Finland (S1), “St.Gobian Weber” – a light-weight aggregate plant in Finland (S2), “LSR-Cement” – a cement plant in LR (S3), and “Rockwool” – a stone wool plant in LR (S4) were seen as the most promising partners and were included in the economic and environmental assessments. Economic assessment using cost-benefit analysis (CBA) indicated that substitution of heavy fuel oil with dry deinking sludge in S2 was the most feasible option with a benefit/cost ratio (BCR) of 3.6 when all the sludge was utilized. At the same time, the use of 15% of the total sludge amount (the amount that could potentially be treated in the scenario) resulted in a BCR of only 0.16. The use of dry deinking sludge in the production of cement (S3) is a slightly more feasible option with a BCR of 1.1. The use of sludge in stone wool production is feasible only when all the deinking sludge is used and burned in an existing incineration plant. The least economically feasible utilization possibility is the use of sludge in cement production in Finland (S1) due to the high gate fee charged. Environmental assessment was performed applying internationally recognized life cycle assessment (LCA) methodologies: ISO 14040 and ISO 14044. The results of a consequential LCA stated that only S1 and S2 lead to a reduction of all environmental impacts within the impact categories chosen compared to the baseline scenario where deinking sludge is landfilled. Considering S1, the largest reduction of 13% was achieved for the global warming potential (GWP), whereas for S2, the largest decrease of abiotic depletion potential (ADP) was by 1.7%, the eutrophication potential (EP) by 1.8%, and a GWP of 2.1% was documented. In S3, the most notable increase of ADP and acidification potential (AP) by 2.6 and 1.5% was indicated, while the GWP was reduced by 12%, the largest out of all the impact categories. In S4, ADP and AP increased by 2.3 and 2.1% respectively, whereas ODP was reduced by 25%. During LCA, it was noticed that substitution of fuels causes a greater reduction of environmental impact (S1 and S2) than substitution of raw materials (S3 and S4). Despite a number of economically and environmentally acceptable deinking sludge utilization methods being assessed in the research, evaluation of bottlenecks and communications with companies’ representatives uncovered the fact that the availability of the raw materials consumed, and the risks associated with technological problems resulting from the sludge utilization, limited the willingness of industrial partners to start deinking sludge utilization. The research results are of high value for decision-makers at already existing paper mills since the result provide insights regarding alternatives to the deinking sludge utilization possibilities already applied. Thus, the research results support the maximum economic and environmental value recovery from waste paper utilization.
Resumo:
The Welland Power and Supply Canal Company Limited, established in 1893 and incorporated in 1894 with a capital stock of $500,000. The aim of the company was to harness the natural water supply of the Niagara and Welland Rivers. In 1898 the Canadian Electrical News published a report by Henry Symons, QC outlining the main project of the company. This project involves the construction of a canal from the Welland River to the brow of the mountain at Thorold, a distance of 8 miles; the construction at Thorold of a power house, and from Thorold to Lake Ontario, a raceway by which to carry water into the lake. The estimate for the machinery to generate 100,000 horse power is £125,000; for transmission line to Toronto at a voltage of 10,000….The total estimate therefore amounts to £2,452,162, or roughly speaking, $12,000,000. Source: Canadian Electrical News, August 1898, p. 172. In 1899 the company officers petitioned the federal government desiring a name change to the Niagara-Welland Power Company Limited. Officers of the company were Harry Symons, President; Charles A. Hesson, Vice-President; and M.R. O’Loughlin, James B. Sheehan, James S. Haydon, Frederick K. Foster, directors; John S. Campbell, secretary-treasurer. The company’s head offices were located in St. Catharines, with a New York (City) office on Broad Street. In 1905 and 1909 the company petitioned the federal government for additional time to construct its works, which was granted. The company had until May 16, 1915 to complete construction. John S. Campbell (1860-1950) was a graduate of the University of Toronto and Osgoode Hall. During his university years John began his military career first in "K" Company, Queens Own rifles and then later as Commanding Officer of the 19th Lincoln Regiment, from 1906 to 1910. Upon his return to St. Catharines John Campbell served as secretary in the St. Catharines Garrison Club, a social club for military men begun in 1899. After being called to the Bar, he became a partner in the firm of Campbell and McCarron and was appointed to the bench in 1916, serving until retirement in 1934. Judge Campbell served as an alderman for several terms and was the mayor of St. Catharines in 1908 and 1909. He also served as the first chairman of the St. Catharines Public Utilities in 1914. John S. Campbell was married to Elizabeth Oille, daughter of Jerome B. and Charlotte (St. John) Oille. The family home "Cruachan" was located at 32 Church St.
Resumo:
With the large penetration of the natural gas into the Brazilian energy structure, industries such as paper mills and chemical plants are analyzing the feasibility of implementing cogeneration schemes appropriate to this fuel. The analysis of the energy demand patterns of a chemical company from the photographic sector revealed the possibility of using combined cycles or diesel engine cogeneration schemes keeping the existing compression refrigeration units and steam or gas cycle cogeneration systems with absorption refrigeration units. In terms of economic attractiveness, an analysis based on the method of the internal rate of return was performed. The results indicated that the schemes composed by reciprocating engines and combined cycle with compression chillers, as well as the gas cycle scheme with absorption chiller, present return periods of up to 3 years, showing that the investment in cogeneration could be of interest for this plant. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Recognizing the great potential of this residue to increase the eucalyptus forests produtivity - when used in its humidified form - the main objective of this project was to decompose the solid residues generated at Luiz Antonio mill, in a fast and artificial way, by means of piles or ridges of composted materials. The materials used in this composting process were: activated sludge, dregs and grits, wood ash and biomass. Applications of both phosphorus and potassium have been used during the planting phase. Nitrogen, in the form of urea, has been applied in two treatments with the main purpose to decrease the C/N ratio and to speed up the decomposition process. The experiment was carried out in 120 days. The best results were obtained in residue piles with a 3:1 ratio, i.e., 75% residues + 25% biomass. This mixture provided an extremely good aeration, thus enabling an appropriate material mixing and homogenization. Under the technological viewpoint, the results obtained from the composting process were quite satisfactory for VCP industrial residues treatment. This composting process enabled a material accelerated stabilization (lower C/N ratio) and homogenization. After this experiment, it became possible to use all residues just as they were generated by Luiz Antônio pulp and paper mill. This project is of the utmost relevance to VCP's forestry department as far as a significant amount of nutrients is getting back to the soil in the form of mineral and organic materials.
Resumo:
This paper focuses on the effects the transfer of ownership from a state‐owned Paper Mill Company to a corporate private ownership has had on environmental and economic shrinkage in Atenquique. This transfer was the result of the ongoing economic process of globalization, after the industrial boom of the paper mills during the second half of the last century. The paper also focuses on how the employees of this Paper Mill Company live and how they have been affected by globalization and how they feel about their paper mill’s new corporate owners. The methodology used was descriptive and exploratory. A sample of ten workers at the company who lived in Atenquique was chosen for an interview. After being inhabited the town of Atenquique developed in terms of population, society and economy. On the other hand the Industrial Company of Atenquique grew during the period when it was a property of the Mexican State. After the company’s privatization, the town started to decline and shrink in three above‐mentioned variables. The impact on the environmental and economic development has initiated the shrinking and declining of Atenquique and the surrounding cities and towns.
Resumo:
El objetivo del proyecto consiste en reconstruir molecularmente la conformación de la "Asamblea Ambiental Ciudadana de Gualeguaychú" desde sus momentos fundacionales e indagar en la demanda social elaborada por los asambleístas de Gualeguaychú en oposición a la posible instalación de dos fábricas de pasta de celulosa, y la efectiva construcción de una de ellas, en la localidad de Fray Bentos, República Oriental del Uruguay. Asimismo, se inscribe en un interés más amplio por enmarcar la lucha ambiental desarrollada por la ciudadanía de Gualeguaychú en los procesos de movilización social protagonizados, en los últimos años en nuestro país, por diversos movimientos sociales organizados en el seno de la sociedad civil en defensa de los bienes naturales y que dado su carácter novedoso, concitan cada vez más la atención de la comunidad académica. Al respecto, en este proyecto de investigación nos interesa poner en discusión los trabajos de investigación elaborados hasta el momento en torno al movimiento social ambientalista de Gualeguaychú, no sólo destacando las diferentes perspectivas teóricas construidas respecto al mismo objeto de investigación; sino que además, nos permitan definir los lineamientos específicos a seguir al momento de llevar a cabo la investigación de forma empírica.
Resumo:
El objetivo del proyecto consiste en reconstruir molecularmente la conformación de la "Asamblea Ambiental Ciudadana de Gualeguaychú" desde sus momentos fundacionales e indagar en la demanda social elaborada por los asambleístas de Gualeguaychú en oposición a la posible instalación de dos fábricas de pasta de celulosa, y la efectiva construcción de una de ellas, en la localidad de Fray Bentos, República Oriental del Uruguay. Asimismo, se inscribe en un interés más amplio por enmarcar la lucha ambiental desarrollada por la ciudadanía de Gualeguaychú en los procesos de movilización social protagonizados, en los últimos años en nuestro país, por diversos movimientos sociales organizados en el seno de la sociedad civil en defensa de los bienes naturales y que dado su carácter novedoso, concitan cada vez más la atención de la comunidad académica. Al respecto, en este proyecto de investigación nos interesa poner en discusión los trabajos de investigación elaborados hasta el momento en torno al movimiento social ambientalista de Gualeguaychú, no sólo destacando las diferentes perspectivas teóricas construidas respecto al mismo objeto de investigación; sino que además, nos permitan definir los lineamientos específicos a seguir al momento de llevar a cabo la investigación de forma empírica.
Resumo:
El objetivo del proyecto consiste en reconstruir molecularmente la conformación de la "Asamblea Ambiental Ciudadana de Gualeguaychú" desde sus momentos fundacionales e indagar en la demanda social elaborada por los asambleístas de Gualeguaychú en oposición a la posible instalación de dos fábricas de pasta de celulosa, y la efectiva construcción de una de ellas, en la localidad de Fray Bentos, República Oriental del Uruguay. Asimismo, se inscribe en un interés más amplio por enmarcar la lucha ambiental desarrollada por la ciudadanía de Gualeguaychú en los procesos de movilización social protagonizados, en los últimos años en nuestro país, por diversos movimientos sociales organizados en el seno de la sociedad civil en defensa de los bienes naturales y que dado su carácter novedoso, concitan cada vez más la atención de la comunidad académica. Al respecto, en este proyecto de investigación nos interesa poner en discusión los trabajos de investigación elaborados hasta el momento en torno al movimiento social ambientalista de Gualeguaychú, no sólo destacando las diferentes perspectivas teóricas construidas respecto al mismo objeto de investigación; sino que además, nos permitan definir los lineamientos específicos a seguir al momento de llevar a cabo la investigación de forma empírica.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Later volumes prepared for the Mutual Security Agency, Productivity and Technical Assistance Division.
Resumo:
ABSTRACT: There has been a growing trend towards the use of biomass as a primary energy source, which now contributes over 54% of the European pulp and paper industry energy needs [1]. The remaining part comes from natural gas, which to a large extent serves as the major source of energy for numerous recovered fiber paper mills located in regions with limited available forest resources. The cost of producing electricity to drive paper machinery and generate heat for steam is increasing as world demand for fossil fuels increases. Additionally, recovered fiber paper mills are also significant producers of fibrous sludge and reject waste material that can contain high amounts of useful energy. Currently, a majority of these waste fractions is disposed of by landspreading, incineration, or landfill. Paper mills must also pay a gate fee to process their waste streams in this way and the result of this is a further increase in operating costs. This work has developed methods to utilize the waste fractions produced at recovered fiber paper mills for the onsite production of combined heat and power (CHP) using advanced thermal conversion methods (pyrolysis and gasification) that are well suited to relatively small scales of throughput. The electrical power created would either be used onsite to power the paper making process or alternatively exported to the national grid, and the surplus heat created could also be used onsite or exported to a local customer. The focus of this paper is to give a general overview of the project progress so far and will present the experimental results of the most successful thermal conversion trials carried out by this work to date. Application: The research provides both paper mills and energy providers with methodologies to condition their waste materials for conversion into useful energy. The research also opens up new markets for gasifier and pyrolysis equipment manufacturers and suppliers.
Resumo:
De-inking sludge is a waste product generated from secondary fibre paper mills who manufacture recycled paper into new paper sheets; it refers directly to the solid residues which evolve during the de-inking stage of the paper pulping process. The current practice for the disposal of this waste is either by land-spreading, land-filling or incineration which are unsustainable. This work has explored the intermediate pyrolysis of pre-conditioned de-inking sludge pellets in a recently patented 20 kg/h intermediate pyrolysis reactor (The Pyroformer). The reactor is essentially two co-axial screws which are configured in such a way as to circulate solids within the reactor and thus facilitate in the cracking of tars. The potential application of using the volatile organic vapours and permanent gases evolved would be to generate both combined heat and power (CHP) located at paper making sites. The results show that de-inking sludge could be successfully pyrolysed and the organic vapours produced were composed of a mixture of aromatic hydrocarbons, phenolic compounds and some fatty acid methyl esters as detected by liquid GC-MS. The calorific value of the oil after condensing was between 36 and 37 MJ/kg and the liquid fuel properties were also determined, permanent gases were detected by a GC-TCD and were composed of approximately 24% CO, 6% CH and 70% CO (v/v%). The solid residue from pyrolysis also contained a small residual calorific value, and was largely composed of mainly calcium based inert metal oxides. The application of applying intermediate pyrolysis to de-inking sludge for both CHP production and waste reduction is in principle a feasible technology which could be applied at secondary fibre paper mills. © 2013 Elsevier B.V. All rights reserved.
Resumo:
De-inking sludge is a waste product generated from secondary fibre paper mills who manufacture recycled paper into new paper sheets; it refers directly to the solid residues which evolve during the de-inking stage of the paper pulping process. The current practice for the disposal of this waste is either by land-spreading, land-filling or incineration which are unsustainable. This work has explored the intermediate pyrolysis of pre-conditioned de-inking sludge pellets in a recently patented 20 kg/h intermediate pyrolysis reactor (The Pyroformer). The reactor is essentially two co-axial screws which are configured in such a way as to circulate solids within the reactor and thus facilitate in the cracking of tars. The potential application of using the volatile organic vapours and permanent gases evolved would be to generate both combined heat and power (CHP) located at paper making sites. The results show that de-inking sludge could be successfully pyrolysed and the organic vapours produced were composed of a mixture of aromatic hydrocarbons, phenolic compounds and some fatty acid methyl esters as detected by liquid GC-MS. The calorific value of the oil after condensing was between 36 and 37 MJ/kg and the liquid fuel properties were also determined, permanent gases were detected by a GC-TCD and were composed of approximately 24% CO, 6% CH and 70% CO (v/v%). The solid residue from pyrolysis also contained a small residual calorific value, and was largely composed of mainly calcium based inert metal oxides. The application of applying intermediate pyrolysis to de-inking sludge for both CHP production and waste reduction is in principle a feasible technology which could be applied at secondary fibre paper mills. © 2013 Elsevier B.V. All rights reserved.
Resumo:
The Thorold Post, Thorold, Ontario. This is a supplement to the paper commemorating the Canada’s Diamond Jubilee 1867-1927. The front page of the supplement is coloured, June 30, 1927.