920 resultados para Ornstein-Uhlenbeck, Maximal Sobolev regularity, infinite dimension, Wiener spaces
Resumo:
We propose a Bayesian framework for regression problems, which covers areas which are usually dealt with by function approximation. An online learning algorithm is derived which solves regression problems with a Kalman filter. Its solution always improves with increasing model complexity, without the risk of over-fitting. In the infinite dimension limit it approaches the true Bayesian posterior. The issues of prior selection and over-fitting are also discussed, showing that some of the commonly held beliefs are misleading. The practical implementation is summarised. Simulations using 13 popular publicly available data sets are used to demonstrate the method and highlight important issues concerning the choice of priors.
Resumo:
This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.
Resumo:
In this paper, we present a framework for Bayesian inference in continuous-time diffusion processes. The new method is directly related to the recently proposed variational Gaussian Process approximation (VGPA) approach to Bayesian smoothing of partially observed diffusions. By adopting a basis function expansion (BF-VGPA), both the time-dependent control parameters of the approximate GP process and its moment equations are projected onto a lower-dimensional subspace. This allows us both to reduce the computational complexity and to eliminate the time discretisation used in the previous algorithm. The new algorithm is tested on an Ornstein-Uhlenbeck process. Our preliminary results show that BF-VGPA algorithm provides a reasonably accurate state estimation using a small number of basis functions.
Resumo:
Stochastic differential equations arise naturally in a range of contexts, from financial to environmental modeling. Current solution methods are limited in their representation of the posterior process in the presence of data. In this work, we present a novel Gaussian process approximation to the posterior measure over paths for a general class of stochastic differential equations in the presence of observations. The method is applied to two simple problems: the Ornstein-Uhlenbeck process, of which the exact solution is known and can be compared to, and the double-well system, for which standard approaches such as the ensemble Kalman smoother fail to provide a satisfactory result. Experiments show that our variational approximation is viable and that the results are very promising as the variational approximate solution outperforms standard Gaussian process regression for non-Gaussian Markov processes.
Resumo:
MSC 2010: 26A33, 34A08, 34K37
Resumo:
Nowadays financial institutions due to regulation and internal motivations care more intensively on their risks. Besides previously dominating market and credit risk new trend is to handle operational risk systematically. Operational risk is the risk of loss resulting from inadequate or failed internal processes, people and systems or from external events. First we show the basic features of operational risk and its modelling and regulatory approaches, and after we will analyse operational risk in an own developed simulation model framework. Our approach is based on the analysis of latent risk process instead of manifest risk process, which widely popular in risk literature. In our model the latent risk process is a stochastic risk process, so called Ornstein- Uhlenbeck process, which is a mean reversion process. In the model framework we define catastrophe as breach of a critical barrier by the process. We analyse the distributions of catastrophe frequency, severity and first time to hit, not only for single process, but for dual process as well. Based on our first results we could not falsify the Poisson feature of frequency, and long tail feature of severity. Distribution of “first time to hit” requires more sophisticated analysis. At the end of paper we examine advantages of simulation based forecasting, and finally we concluding with the possible, further research directions to be done in the future.
Resumo:
A szerző egy, a szennyezőanyag-kibocsátás európai kereskedelmi rendszerében megfelelésre kötelezett gázturbinás erőmű szén-dioxid-kibocsátását modellezi négy termékre (völgy- és csúcsidőszaki áramár, gázár, kibocsátási kvóta) vonatkozó reálopciós modell segítségével. A profitmaximalizáló erőmű csak abban az esetben termel és szennyez, ha a megtermelt áramon realizálható fedezete pozitív. A jövőbeli időszak összesített szén-dioxid-kibocsátása megfeleltethető európai típusú bináris különbözetopciók összegének. A modell keretein belül a szén-dioxid-kibocsátás várható értékét és sűrűségfüggvényét becsülhetjük, az utóbbi segítségével a szén-dioxid-kibocsátási pozíció kockáztatott értékét határozhatjuk meg, amely az erőmű számára előírt megfelelési kötelezettség teljesítésének adott konfidenciaszint melletti költségét jelenti. A sztochasztikus modellben az alaptermékek geometriai Ornstein-Uhlenbeck-folyamatot követnek. Ezt illesztette a szerző a német energiatőzsdéről származó publikus piaci adatokra. A szimulációs modellre támaszkodva megvizsgálta, hogy a különböző technológiai és piaci tényezők ceteris paribus megváltozása milyen hatással van a megfelelés költségére, a kockáztatott értékére. ______ The carbon-dioxide emissions of an EU Emissions Trading System participant, gas-fuelled power generator are modelled by using real options for four underlying instruments (peak and off-peak electricity, gas, emission quota). This profit-maximizing power plant operates and emits pollution only if its profit (spread) on energy produced is positive. The future emissions can be estimated by a sum of European binary-spread options. Based on the real-option model, the expected value of emissions and its probability-density function can be deducted. Also calculable is the Value at Risk of emission quota position, which gives the cost of compliance at a given confidence level. To model the prices of the four underlying instruments, the geometric Ornstein-Uhlenbeck process is supposed and matched to public available price data from EEX. Based on the simulation model, the effects of various technological and market factors are analysed for the emissions level and the cost of compliance.
Resumo:
In this study wave propagation, dispersion relations, and energy relations for linear elastic periodic systems are analyzed. In particular, the dispersion relations for monoatomic chain of infinite dimension are obtained analytically by writing the Block-type wave equation for a unit cell in order to capture the dynamic behavior for chains under prescribed vibration. By comparing the discretized model (mass-spring chain) with the solid bar system, the nonlinearity of the dispersion relation for chain indicates that the periodic lattice is dispersive in contrast to the continuous rod, which is non dispersive. Further investigations have been performed considering one-dimensional diatomic linear elastic mass-spring chain. The dispersion relations, energy velocity, and group velocity have been derived. At certain range of frequencies harmonic plane waves do not propagate in contrast with monoatomic chain. Also, since the diatomic chain considered is a linear elastic chain, both of the energy velocity and the group velocity are identical. As long as the linear elastic condition is considered the results show zero flux condition without residual energy. In addition, this paper shows that the diatomic chain dispersion relations are independent on the unit cell scheme. Finally, an extension for the study covers the dispersion and energy relations for 2D- grid system. The 2x2 grid system show a periodicity of the dispersion surface in the wavenumber domain. In addition, the symmetry of the surface can be exploited to identify an Irreducible Brillouin Zone (IBZ). Compact representations of the dispersion properties of multidimensional periodic systems are obtained by plotting frequency as the wave vector’s components vary along the boundary of the IBZ, which leads to a widely accepted and effective visualization of bandgaps and overall dispersion properties.
Resumo:
Distributed quantum information processing (QIP) is a promising way to bypass problems due to unwanted interactions between elements. However, this strategy presupposes the engineering of protocols for remote processors. In many of them, pairwise entanglement is a key resource. We study a model which distributes entanglement among elements of a delocalized network without local control. The model is efficient both in finite- and infinite-dimensional Hilbert spaces. We suggest a setup of electromechanical systems to implement our proposal.
Resumo:
Let $\Gamma$ be the class of sequentially complete locally convex spaces such that an existence theorem holds for the linear Cauchy problem $\dot x = Ax$, $x(0) = x_0$ with respect to functions $x: R\to E$. It is proved that if $E\in \Gamma$, then $E\times R^A$ is-an-element-of $\Gamma$ for an arbitrary set $A$. It is also proved that a topological product of infinitely many infinite-dimensional Frechet spaces, each not isomorphic to $\omega$, does not belong to $\Gamma$.
Resumo:
For Wiener spaces conditional expectations and $L^{2}$-martingales w.r.t. the natural filtration have a natural representation in terms of chaos expansion. In this note an extension to larger classes of processes is discussed. In particular, it is pointed out that orthogonality of the chaos expansion is not required.
Resumo:
We prove non-emptiness of the alpha-core for balanced games with non-ordered preferences, extending and generalizing in several aspects the results of Scarf (1971), Border (1984), Florenzano (1989), Yannelis (1991) and Kajii (1992). In particular we answer an open question in Kajii (1992) regarding the applicability of the non-emptiness results to models with infinite dimensional strategy spaces. We provide two models with Knightian and voting preferences for which the results of Scarf (1971) and Kajii (1992) cannot be applied while our non-emptiness result applies.
Resumo:
In this paper, we prove that infinite-dimensional vector spaces of α-dense curves are generated by means of the functional equations f(x)+f(2x)+⋯+f(nx)=0, with n≥2, which are related to the partial sums of the Riemann zeta function. These curves α-densify a large class of compact sets of the plane for arbitrary small α, extending the known result that this holds for the cases n=2,3. Finally, we prove the existence of a family of solutions of such functional equation which has the property of quadrature in the compact that densifies, that is, the product of the length of the curve by the nth power of the density approaches the Jordan content of the compact set which the curve densifies.
Resumo:
We consider some non-autonomous second order Cauchy problems of the form u + B(t)(u) over dot + A(t)u = f (t is an element of [0, T]), u(0) = (u) over dot(0) = 0. We assume that the first order problem (u) over dot + B(t)u = f (t is an element of [0, T]), u(0) = 0, has L-p-maximal regularity. Then we establish L-p-maximal regularity of the second order problem in situations when the domains of B(t(1)) and A(t(2)) always coincide, or when A(t) = kappa B(t).
Resumo:
Quasiconformal mappings are natural generalizations of conformal mappings. They are homeomorphisms with 'bounded distortion' of which there exist several approaches. In this work we study dimension distortion properties of quasiconformal mappings both in the plane and in higher dimensional Euclidean setting. The thesis consists of a summary and three research articles. A basic property of quasiconformal mappings is the local Hölder continuity. It has long been conjectured that this regularity holds at the Sobolev level (Gehring's higher integrabilty conjecture). Optimal regularity would also provide sharp bounds for the distortion of Hausdorff dimension. The higher integrability conjecture was solved in the plane by Astala in 1994 and it is still open in higher dimensions. Thus in the plane we have a precise description how Hausdorff dimension changes under quasiconformal deformations for general sets. The first two articles contribute to two remaining issues in the planar theory. The first one concerns distortion of more special sets, for rectifiable sets we expect improved bounds to hold. The second issue consists of understanding distortion of dimension on a finer level, namely on the level of Hausdorff measures. In the third article we study flatness properties of quasiconformal images of spheres in a quantitative way. These also lead to nontrivial bounds for their Hausdorff dimension even in the n-dimensional case.