895 resultados para ORIENTED PYROLYTIC-GRAPHITE
Resumo:
Ex situ and in situ STM characterization of the electrode materials, including HOPG, GC, Au, Pt and other electrodes, is briefly surveyed and critically evaluated. The relationship between the electrode activity and surface microtopography is discussed.
Resumo:
The surface topography of highly oriented pyrolytic graphite (HOPG) which has been subjected to anodized treatment at a low potential (less positive) has been exhaustively studied using scanning tunneling microscopy (STM). Characterization of graphite surface has revealed that a small percentage of the surface (5%-10%) shows superperiodic features. In this case, the typical topographical features are triangular networks with the observed periodicities in the plane ranging from approximately 26 to 240 nm with peak-to-peak amplitudes out of the plane extending from 7 to 35 Angstrom. We show that this triangular network can be attributed to the injection of electrolyte and solvent in the earliest stages of oxidation of the basal HOPG electrode surface. A simple model is proposed to explain this phenomenon.
Resumo:
Flavin adenine dinucleotide (FAD) was modified onto the highly oriented pyrolytic graphite (hopg) and glassy carbon electrode (gee) surfaces with three methods, respectively. Corresponding image analysis for FAD-modified hopg surfaces has been performed by scanning tunnelling microscope (STM) for the first time. The molecular resolution STM image of FAD adsorbed on the freshly-cleaved hopg was obtained, the quantitative size determination suggests that the FAD molecules adsorb side lying on the substrate surface. The anodization treatment of hopg surface yields many pits, which were clearly observed under STM. These pits provide active sites on the hopg surface for modification and the treated hopg can strongly adsorb FAD molecules, the latter exhibiting an irregular cluster structure on such a surface. When FAD was electrochemically deposited on the substrate surface, a chain structure was successfully observed. The adsorbed FAD on anodized glassy carbon electrode (gee) surface can effectively catalyze the reduction of glucose oxidase, hemoglobin and myoglobin, with a large decrease in the overvoltage, whereas the deposited FAD film exhibits excellent electrocatalysis towards dioxygen reduction.
Resumo:
Myoglobin molecules were deposited on a surfactant sodium dodecyl sulfate modified HOPG surface and imaged in air with a high resolution scanning tunneling microscope (STM) for the first time. STM images exhibit not only ordered arrays of the surfactant m
Resumo:
The glassy carbon electrode (gce) and highly oriented pyrolytic graphite (hopg) were electrochemically anodized at a potential of +2.0 V (vs. Ag/AgCl) to create active sites and to improve the adsorption of glucose oxidase (GOD) and flavin adenine dinucle
Resumo:
Polypyrrole doped with p-toluenesulfonate was electropolymerized onto highly oriented pyrolytic graphite (HOPG), glassy carbon (GC) and Pt electrode surfaces under the same experimental conditions. The resulting films were studied by scanning tunneling m
Resumo:
The early stages of the electrodeposition of nickel on highly oriented pyrolytic graphite (HOPG) were investigated by in situ scanning tunnelling microscopy, scanning electron microscopy and electrochemical measurements. Experimental results showed that t
Resumo:
Native and unfolded glucose oxidase (GOD) structures have been directly observed with scanning tunnelling microscopy (STM) for the first time. STM images show an opening butterfly-shaped pattern for the native GOD. When GOD molecules are extended on anodi
Resumo:
Phycobilisomes (PBS) were isolated from blue-green alga Spirulina platensis. Scanning tunneling microscope was used to investigate the three-dimensional structure of PBS deposited on freshly cleaved highly oriented pyrolytic graphite (HOPG) in ambient condition at room temperature. The results showed that the rods of PBS radiated from the core to different directions in the space other than arrayed in one plane, which was different from the typical hemi-discoidal model structure. The diameter of PBS was up to 70 nm, and the rod was approximately 50 nm in length. Similar results were observed in Langmuir-Blodgett (LB) film of PBS. The dissociated PBS could reaggregate into rod-like structures and easily form two-dimensional membrane while being absorbed on HOPG, however, no intact PBS was observed. The filling-space model structure of PBS in Spirulina platensis with STM from three-dimensional real space at nanometer scale was found, which showed that this new structural model of PBS surely exists in blue-green algae and red algae. The function of this structural model of PBS was also discussed.
Resumo:
C-phycocyanin (C-PC) was isolated from blue-green alga spirulina platensis. A scanning tunneling microscope (STM) has been used to investigate its three-dimensional structure. The samples were dialyzed before the STM experiment, and then deposited on highly oriented pyrolytic graphite (HOPG). The measurement was carried out in ambient condition at room temperature. STM images showed that C-phycocyanin was uniformly distributed on solid-state substrate HOPG. The shape of C-phycocyanin is disklike with a channel in the center. It is concluded that STM has great potential to observe the structure of biliproteins and phycobilisomes.
Resumo:
We have investigated growth of silver clusters on three different, i.e. normally cleaved, thermally oxidized and Ar+ ion sputtered highly oriented pyrolytic graphite (HOPG), surfaces. Scanning tunneling microscopy (STM) observations reveal that uniformly sized and spaced Ag clusters only form on the sputtered surface. Ar+ sputtering introduces relatively uniform surface defects compared to other methods. These defects are found to serve as preferential sites for Ag cluster nucleation, which leads to the formation of uniform clusters. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The idealized system of an atomically flat metallic surface [highly oriented pyrolytic graphite (HOPG)] and an organic monolayer (porphyrin) was used to determine whether the dielectric function and associated properties of thin films can be accessed with scanning-near-field scanning optical microscopy (s-NSOM). Here, we demonstrate the use of harmonics up to fourth order and the polarization dependence of incident light to probe dielectric properties on idealized samples of monolayers of organic molecules on atomically smooth substrates. An analytical treatment of light/sample interaction using the s-NSOM tip was developed in order to quantify the dielectric properties. The theoretical analysis and numerical modeling, as well as experimental data, demonstrate that higher order harmonic scattering can be used to extract the dielectric properties of materials with tens of nanometer spatial resolution. To date, the third harmonic provides the best lateral resolution (∼50 nm) and dielectric constant contrast for a porphyrin film on HOPG. © 2009 American Institute of Physics.
Resumo:
A novel wide angle spectrometer has been implemented with a highly oriented pyrolytic graphite crystal coupled to an image plate. This spectrometer has allowed us to look at the energy resolved spectrum of scattered x rays from a dense plasma over a wide range of angles ( ~ 30°) in a single shot. Using this spectrometer we were able to observe the temporal evolution of the angular scatter cross section from a laser shocked foil. A spectrometer of this type may also be useful in investigations of x-ray line transfer from laser-plasmas experiments.
Resumo:
We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.