955 resultados para Navigation.
Resumo:
This thesis develops the hardware and software framework for an integrated navigation system. Dynamic data fusion algorithms are used to develop a system with a high level of resistance to the typical problems that affect standard navigation systems.
Resumo:
In this paper, we present a monocular vision based autonomous navigation system for Micro Aerial Vehicles (MAVs) in GPS-denied environments. The major drawback of monocular systems is that the depth scale of the scene can not be determined without prior knowledge or other sensors. To address this problem, we minimize a cost function consisting of a drift-free altitude measurement and up-to-scale position estimate obtained using the visual sensor. We evaluate the scale estimator, state estimator and controller performance by comparing with ground truth data acquired using a motion capture system. All resources including source code, tutorial documentation and system models are available online.
Resumo:
University campuses have thousands of new students, staff and visitors every year. For those who are unfamiliar with the campus environment, an effective pedestrian navigation system is essential to orientate and guide them around the campus. Compared to traditional navigation systems, such as physical signposts and digital map kiosks, a mobile pedestrian navigation system provides advantages in terms of mobility, sensing capabilities, weather-awareness when the user is on the go. However, how best to design a mobile pedestrian navigation system for university campuses is still vague due to limited research in understanding how pedestrians interact with the system, and what information is required for traveling in a complex environment such as university campus. In this paper, we present a mobile pedestrian navigation system called QUT Nav. A field study with eight participants was run in a university campus context, aiming to identify key information required in a mobile pedestrian navigation system for user traveling in university campuses. It also investigated user's interactions and behaviours while they were navigating in the campus environment. Based on the results from the field study, a recommendation for designing mobile pedestrian navigation systems for university campuses is stated.
Resumo:
Passengers navigating through airports can experience confusion or become lost, resulting in dissatisfaction, missed flights and flight delays. Passengers moving through airports are required to make many navigation decisions, for example to find the correct check-in desk or find the correct boarding gate. Prior experience of using the airports is likely to enable intuitive navigation, however limited research on this topic currently exists. In this paper we investigate passenger navigation by observing 30 participants at one international airport as they moved from check-in to a departure gate. The results indicate that passengers do spend time navigating intuitively through the airport, and that there is a positive correlation between intuitive navigation and airport familiarity. It was also found that participants with lower airport familiarity spend a greater percentage of overall navigation time searching and assessing/acquiring information than high familiarity participants. These findings provide evidence that passengers with higher airport familiarity have a greater understanding of the process, have a better understanding of what information to look for and use this familiarity to navigate intuitively. Findings from this research will have design implications for both current, and future airport terminals and other large spaces that people navigate through.
Resumo:
In this paper, we present SMART (Sequence Matching Across Route Traversals): a vision- based place recognition system that uses whole image matching techniques and odometry information to improve the precision-recall performance, latency and general applicability of the SeqSLAM algorithm. We evaluate the system’s performance on challenging day and night journeys over several kilometres at widely varying vehicle velocities from 0 to 60 km/h, compare performance to the current state-of- the-art SeqSLAM algorithm, and provide parameter studies that evaluate the effectiveness of each system component. Using 30-metre sequences, SMART achieves place recognition performance of 81% recall at 100% precision, outperforming SeqSLAM, and is robust to significant degradations in odometry.
Resumo:
This paper presents a long-term experiment where a mobile robot uses adaptive spherical views to localize itself and navigate inside a non-stationary office environment. The office contains seven members of staff and experiences a continuous change in its appearance over time due to their daily activities. The experiment runs as an episodic navigation task in the office over a period of eight weeks. The spherical views are stored in the nodes of a pose graph and they are updated in response to the changes in the environment. The updating mechanism is inspired by the concepts of long- and short-term memories. The experimental evaluation is done using three performance metrics which evaluate the quality of both the adaptive spherical views and the navigation over time.
Resumo:
An on-road study was conducted to evaluate a complementary tactile navigation signal on driving behaviour and eye movements for drivers with hearing loss (HL) compared to drivers with normal hearing (NH). 32 participants (16 HL and 16 NH) performed two preprogrammed navigation tasks. In one, participants received only visual information, while the other also included a vibration in the seat to guide them in the correct direction. SMI glasses were used for eye tracking, recording the point of gaze within the scene. Analysis was performed on predefined regions. A questionnaire examined participant's experience of the navigation systems. Hearing loss was associated with lower speed, higher satisfaction with the tactile signal and more glances in the rear view mirror. Additionally, tactile support led to less time spent viewing the navigation display.
Resumo:
This thesis presents social requirements and design considerations from a study evaluating interactive approaches to social navigation and user-generated information sharing in urban environments using mobile devices. It investigates innovative ways to leverage mobile information and communication technology in order to provide a social navigation platform for residents and visitors in and for public urban places. Through a design case study this work presents CityFlocks, a mobile information system that offers an easy way for information-seeking new residents or visitors to access tacit knowledge from local people about their new community. It is intended to enable visitors and new residents in a city to tap into the knowledge and experiences of local residents in order to gather information about their new environment. Its design specifically aims to lower existing barriers of access and facilitate social navigation in urban places. In various user tests it evaluates two general user interaction alternatives – direct and indirect social navigation – and analyses which interaction method works better for people using a mobile device to socially navigate urban environments. The outcomes are relevant for the user interaction design of future mobile information systems that leverage the social navigation approach.
Resumo:
We describe recent biologically-inspired mapping research incorporating brain-based multi-sensor fusion and calibration processes and a new multi-scale, homogeneous mapping framework. We also review the interdisciplinary approach to the development of the RatSLAM robot mapping and navigation system over the past decade and discuss the insights gained from combining pragmatic modelling of biological processes with attempts to close the loop back to biology. Our aim is to encourage the pursuit of truly interdisciplinary approaches to robotics research by providing successful case studies.
Resumo:
This paper proposes an approach to achieve resilient navigation for indoor mobile robots. Resilient navigation seeks to mitigate the impact of control, localisation, or map errors on the safety of the platform while enforcing the robot’s ability to achieve its goal. We show that resilience to unpredictable errors can be achieved by combining the benefits of independent and complementary algorithmic approaches to navigation, or modalities, each tuned to a particular type of environment or situation. In this paper, the modalities comprise a path planning method and a reactive motion strategy. While the robot navigates, a Hidden Markov Model continually estimates the most appropriate modality based on two types of information: context (information known a priori) and monitoring (evaluating unpredictable aspects of the current situation). The robot then uses the recommended modality, switching between one and another dynamically. Experimental validation with a SegwayRMP- based platform in an office environment shows that our approach enables failure mitigation while maintaining the safety of the platform. The robot is shown to reach its goal in the presence of: 1) unpredicted control errors, 2) unexpected map errors and 3) a large injected localisation fault.
Resumo:
Considering the wide spectrum of situations that it may encounter, a robot navigating autonomously in outdoor environments needs to be endowed with several operating modes, for robustness and efficiency reasons. Indeed, the terrain it has to traverse may be composed of flat or rough areas, low cohesive soils such as sand dunes, concrete road etc... Traversing these various kinds of environment calls for different navigation and/or locomotion functionalities, especially if the robot is endowed with different locomotion abilities, such as the robots WorkPartner, Hylos [4], Nomad or the Marsokhod rovers.
Resumo:
Considering the wide spectrum of situations that it may encounter, a robot navigating autonomously in outdoor environments needs to be endowed with several operating modes, for robustness and efficiency reasons. Indeed, the terrain it has to traverse may be composed of flat or rough areas, low cohesive soils such as sand dunes, concrete road etc. . .Traversing these various kinds of environment calls for different navigation and/or locomotion functionalities, especially if the robot is endowed with different locomotion abilities, such as the robots WorkPartner, Hylos [4], Nomad or the Marsokhod rovers. Numerous rover navigation techniques have been proposed, each of them being suited to a particular environment context (e.g. path following, obstacle avoidance in more or less cluttered environments, rough terrain traverses...). However, seldom contributions in the literature tackle the problem of selecting autonomously the most suited mode [3]. Most of the existing work is indeed devoted to the passive analysis of a single navigation mode, as in [2]. Fault detection is of course essential: one can imagine that a proper monitoring of the Mars Exploration Rover Opportunity could have avoided the rover to be stuck during several weeks in a dune, by detecting non-nominal behavior of some parameters. But the ability to recover the anticipated problem by switching to a better suited navigation mode would bring higher autonomy abilities, and therefore a better overall efficiency. We propose here a probabilistic framework to achieve this, which fuses environment related and robot related information in order to actively control the rover operations.
Resumo:
The central document governing the global organization of Air Navigation Services (ANS) is the Convention on International Civil Aviation, commonly referred to as the “Chicago Convention,” whose original version was signed in that city in 1944. In the Convention, Contracting States agreed to ensure the minimum standards of ANS established by ICAO, a specialized United Nations agency created by the Convention. Emanating from obligations under the Chicago Convention, ANS has traditionally provided by departments of national governments. However, there is a widespread trend toward transferring delivery of ANS services outside of line departments of national governments to independent agencies or corporations. The Civil Air Navigation Services Organisation (CANSO), which is the trade association for independent ANS providers, currently counts approximately 60 members, and is steadily growing. However, whatever delivery mechanisms are chosen, national governments remain ultimately responsible for ensuring that adequate ANS services are available. The provision by governments of ANS reflects the responsibility of the state for safety, international relations, and indirectly, the macroeconomic benefits of ensuring a sound infrastructure for aviation. ANS is a “public good” and an “essential good” provided to all aircraft using a country’s airfields and airspace. However, ANS also represents a service that directly benefits only a limited number of users, notably aircraft owners and operators. The idea that the users of the system, rather than the taxpaying public, should incur the costs associated with ANS provision is inherent in the commercialization process. However, ICAO sets out broad principles for the establishment of user charges, which member states are expected to comply with. ICAO states that only distance flown and aircraft weights are acceptable parameters for use in a charging system. These two factors are considered to be easy to measure, bear a reasonable relationship to the value of service received, and do not discriminate due to factors such as where the flight originated or the nation of aircraft registration.
Resumo:
In this paper we describe the benefits of a performance-based approach to modeling biological systems for use in robotics. Specifically, we describe the RatSLAM system, a computational model of the navigation processes thought to drive navigation in a part of the rodent brain called the hippocampus. Unlike typical computational modeling approaches, which focus on biological fidelity, RatSLAM’s development cycle has been driven primarily by performance evaluation on robots navigating in a wide variety of challenging, real world environments. We briefly describe three seminal results, two in robotics and one in biology. In addition, we present current research on brain-inspired learning algorithms with the aim of enabling a robot to autonomously learn how best to use its sensor suite to navigate, without requiring any specific knowledge of the robot, sensor types or environment characteristics. Our aim is to drive discussion on the merits of practical, performance-focused implementations of biological models in robotics.
Resumo:
This thesis describes the investigation of an Aircraft Dynamic Navigation (ADN) approach, which incorporates an Aircraft Dynamic Model (ADM) directly into the navigation filter of a fixed-wing aircraft or UAV. The result is a novel approach that offers both performance improvements and increased reliability during short-term GPS outages. This is important in allowing future UAVs to achieve routine, unconstrained, and safe operations in commercial environments. The primary contribution of this research is the formulation Unscented Kalman Filter (UKF) which incorporates a complex, non-linear, laterally and longitudinally coupled, ADM, and sensor suite consisting of a Global Positioning System (GPS) receiver, Inertial Measurement Unit (IMU), Electronic Compass (EC), and Air Data (AD) Pitot Static System.