960 resultados para Microbial fuel cell
Resumo:
This work aimed to develop plurimetallic electrocatalysts composed of Pt, Ru, Ni, and Sn supported on C by decomposition of polymeric precursors (DPP), at a constant metal: carbon ratio of 40:60 wt.%, for application in direct ethanol fuel cell (DEFC). The obtained nanoparticles were physico-chemically characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). XRD results revealed a face-centered cubic crystalline Pt with evidence that Ni, Ru, and Sn atoms were incorporated into the Pt structure. Electrochemical characterization of the nanoparticles was accomplished by cyclic voltammetry (CV) and chronoamperometry (CA) in slightly acidic medium (0.05 mol L-1 H2SO4), in the absence and presence of ethanol. Addition of Sn to PtRuNi/C catalysts significantly shifted the ethanol and CO onset potentials toward lower values, thus increasing the catalytic activity, especially for the quaternary composition Pt64Sn15Ru13Ni8/C. Electrolysis of ethanol solutions at 0.4 V vs. RHE allowed determination of acetaldehyde and acetic acid as the main reaction products. The presence of Ru in alloys promoted formation of acetic acid as the main product of ethanol oxidation. The Pt64Sn15Ru13Ni8/C catalyst displayed the best performance for DEFC.
Resumo:
The performance of an ABPBI-based High Temperature H-2/O-2 PEMFC system was studied under different experimental conditions. Increasing the temperature from 130 to 170 degrees C improved the cell performance, even though further increase was not beneficial for the system. Humidification of the H-2 stream ameliorated this behaviour, even though operating above 170 degrees C is not advisable in terms of cell performance. A significant electrolyte dehydration seems to negatively affect the fuel cell performance, especially in the case of the anode. In the presence of 2% vol. CO in the H-2 stream, the temperature exerted a positive effect on the cell performance, reducing the strong adsorption of this poison on the platinum sites. Moreover, humidification of the H-2 + CO stream increased the maximum power densities of the cell, further alleviating the CO poisoning effects. Actual CO-O-2 fuel cell results confirmed the significant beneficial effect of the relative humidity on the kinetics of the CO oxidation process. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
The effect of trace quantities of ammonia on oxygen reduction reaction (ORR) on carbon-supported platinum catalysts in perchloric acid solutions is assessed using rotating ring disk electrode (RRDE) technique. The study demonstrates that ammonia has detrimental effects on ORR. The most significant effect takes place in the potential region above 0.7 V vs RHE. The effect is explained by the electrochemical oxidation of ammonia, which blocks Pt active sites and increases the formation of H2O2. This leads to losses in the disk currents and increments in the ring currents. The apparent losses in ORR currents may occur in two ways, namely, through the blocking of the active sites for ORR as well as by generating a small anodic current, which is believed to have a lower contribution. In addition, a detrimental effect of sodium cations in the potential range below 0.75 V vs RHE was demonstrated. This effect is most likely due to the co-adsorption of sodium cations and perchlorate anions on the Pt surface. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Chitosan/poly(vinyl sulfonic acid) (PVS) films have been prepared on Nafion® membranes by the layer-by-layer (LbL) method for use in direct methanol fuel cell (DMFC). Computational methods and Fourier transform infrared (FTIR) spectra suggest that an ionic pair is formed between the sulfonic group of PVS and the protonated amine group of chitosan, thereby promoting the growth of LbL films on the Nafion® membrane as well as partial blocking of methanol. Chronopotentiometry and potential linear scanning experiments have been carried out for investigation of methanol crossover through the Nafion® and chitosan/PVS/Nafion® membranes in a diaphragm diffusion cell. On the basis of electrical impedance measurements, the values of proton resistance of the Nafion® and chitosan/PVS/Nafion® membranes are close due to the small thickness of the LbL film. Thus, it is expected an improved DMFC performance once the additional resistance of the self-assembled film is negligible compared to the result associated with the decrease in the crossover effect.
Resumo:
This work aimed to develop plurimetallic electrocatalysts composed of Pt, Ru, Ni, and Sn supported on C by decomposition of polymeric precursors (DPP), at a constant metal:carbon ratio of 40:60 wt.%, for application in direct ethanol fuel cell (DEFC). The obtained nanoparticles were physico-chemically characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). XRD results revealed a face-centered cubic crystalline Pt with evidence that Ni, Ru, and Sn atoms were incorporated into the Pt structure. Electrochemical characterization of the nanoparticles was accomplished by cyclic voltammetry (CV) and chronoamperometry (CA) in slightly acidic medium (0.05 mol L-1 H2SO4), in the absence and presence of ethanol. Addition of Sn to PtRuNi/C catalysts significantly shifted the ethanol and CO onset potentials toward lower values, thus increasing the catalytic activity, especially for the quaternary composition Pt64Sn15Ru13Ni8/C. Electrolysis of ethanol solutions at 0.4 V vs. RHE allowed determination of acetaldehyde and acetic acid as the main reaction products. The presence of Ru in alloys promoted formation of acetic acid as the main product of ethanol oxidation. The Pt64Sn15Ru13Ni8/C catalyst displayed the best performance for DEFC.
Resumo:
The control of a proton exchange membrane fuel cell system (PEM FC) for domestic heat and power supply requires extensive control measures to handle the complicated process. Highly dynamic and non linear behavior, increase drastically the difficulties to find the optimal design and control strategies. The objective is to design, implement and commission a controller for the entire fuel cell system. The fuel cell process and the control system are engineered simultaneously; therefore there is no access to the process hardware during the control system development. Therefore the method of choice was a model based design approach, following the rapid control prototyping (RCP) methodology. The fuel cell system is simulated using a fuel cell library which allowed thermodynamic calculations. In the course of the development the process model is continuously adapted to the real system. The controller application is designed and developed in parallel and thereby tested and verified against the process model. Furthermore, after the commissioning of the real system, the process model can be also better identified and parameterized utilizing measurement data to perform optimization procedures. The process model and the controller application are implemented in Simulink using Mathworks` Real Time Workshop (RTW) and the xPC development suite for MiL (model-in-theloop) and HiL (hardware-in-the-loop) testing. It is possible to completely develop, verify and validate the controller application without depending on the real fuel cell system, which is not available for testing during the development process. The fuel cell system can be immediately taken into operation after connecting the controller to the process.
Resumo:
In order to synthesize proton-conducting materials which retain acids in the membrane during fuel cell operating conditions, the synthesis of poly(vinylphosphonic acid) grafted polybenzimidazole (PVPA grafted PBI) and the fabrication of multilayer membranes are mainly focussed in this dissertation. Synthesis of PVPA grafted PBI membrane can be done according to "grafting through" method. In "grafting through" method (or macromonomer method), monomer (e.g., vinylphosphonic acid) is radically copolymerized with olefin group attached macromonomer (e.g., allyl grafted PBI and vinylbenzyl grafted PBI). This approach is inherently limited to synthesize graft-copolymer with well-defined architectural and structural parameters. The incorporation of poly(vinylphosphonic acid) into PBI lead to improvements in proton conductivity up to 10-2 S/cm. Regarding multilayer membranes, the proton conducting layer-by-layer (LBL) assembly of polymers by various strong acids such as poly(vinylphosphonic acid), poly(vinylsulfonic acid) and poly(styrenesulfonic acid) paired with basic polymers such as poly(4-vinylimidazole) and poly(benzimidazole), which are appropriate for ‘Proton Exchange Membranes for Fuel Cell’ applications have been described. Proton conductivity increases with increasing smoothness of the film and the maximum measured conductivity was 10-4 S/cm at 25°C. Recently, anhydrous proton-conducting membranes with flexible structural backbones, which show proton-conducting properties comparable to Nafion have been focus of current research. The flexible backbone of polymer chains allow for a high segmental mobility and thus, a sufficiently low glass transition temperature (Tg), which is an essential factor to reach highly conductive systems. Among the polymers with a flexible chain backbone, poly(vinylphosphonic acid), poly(vinylbenzylphosphonic acid), poly(2-vinylbenzimidazole), poly(4-styrenesulfonic acid), poly(4-vinylimidazole), poly(4-vinylimidazole-co-vinylphosphonic acid) and poly(4-vinylimidazole-co-4-styrenesulfonic acid) are interesting materials for fuel cell applications. Synthesis of polybenzimidazole with anthracene structural unit was carried out in order to avoid modification reaction in the imidazole ring, because anthracene would encourage the modification reaction with an olefin by Diels-Alder reaction.
Resumo:
In this work the synthesis of polyarylated cycloparaphenylenes (CPPs) is described in order to form structurally defined carbon nanotube (CNT) segments by the Scholl reaction. Therefore, polyphenylene macrocycles in different sizes and substitution patterns were synthesized. The influence of the ring-strain on the oxidative cyclodehydrogenation of these macrocycles towards CNT segments was investigated. It was demonstrated that a selective solution based bottom-up synthesis of CNT segments could be accomplished, having polyarylated CPPs, sufficient in size and with the right substituents at the critical positions. These findings mark an important step towards the bottom-up synthesis of length- and diameter defined ultrashort CNTsrnIn the second part of this work, novel non-precious metal catalysts (NPMCs) based on phenanthroline-indole macrocycles were synthesized and their electrocatalytic performance in the cathodic oxygen reduction was investigated. It could be demonstrated that all catalysts contributed to the direct 4-electron reduction of oxygen to water in alkaline media and a superior long-term stability was observed. Since these NPMCs are not heat pre-treated, the catalytically active site was structurally well-defined, allowing the investigation of the structure-property relationship. Moreover, it could be shown that these novel NPMCs act as efficient ORR catalysts and could replace the expensive and scarce platinum in fuel cell applications.rn
Resumo:
Fuel cells are a topic of high interest in the scientific community right now because of their ability to efficiently convert chemical energy into electrical energy. This thesis is focused on solid oxide fuel cells (SOFCs) because of their fuel flexibility, and is specifically concerned with the anode properties of SOFCs. The anodes are composed of a ceramic material (yttrium stabilized zirconia, or YSZ), and conducting material. Recent research has shown that an infiltrated anode may offer better performance at a lower cost. This thesis focuses on the creation of a model of an infiltrated anode that mimics the underlying physics of the production process. Using the model, several key parameters for anode performance are considered. These are the initial volume fraction of YSZ in the slurry before sintering, the final porosity of the composite anode after sintering, and the size of the YSZ and conducting particles in the composite. The performance measures of the anode, namely percolation threshold and effective conductivity, are analyzed as a function of these important input parameters. Simple two and three-dimensional percolation models are used to determine the conditions at which the full infiltrated anode would be investigated. These more simple models showed that the aspect ratio of the anode has no effect on the threshold or effective conductivity, and that cell sizes of 303 are needed to obtain accurate conductivity values. The full model of the infiltrated anode is able to predict the performance of the SOFC anodes and it can be seen that increasing the size of the YSZ decreases the percolation threshold and increases the effective conductivity at low conductor loadings. Similar trends are seen for a decrease in final porosity and a decrease in the initial volume fraction of YSZ.
Resumo:
Solid oxide fuel cells (SOFCs) provide a potentially clean way of using energy sources. One important aspect of a functioning fuel cell is the anode and its characteristics (e.g. conductivity). Using infiltration of conductor particles has been shown to be a method for production at lower cost with comparable functionality. While these methods have been demonstrated experimentally, there is a vast range of variables to consider. Because of the long time for manufacture, a model is desired to aid in the development of the desired anode formulation. This thesis aims to (1) use an idealized system to determine the appropriate size and aspect ratio to determine the percolation threshold and effective conductivity as well as to (2) simulate the infiltrated fabrication method to determine the effective conductivity and percolation threshold as a function of ceramic and pore former particle size, particle fraction and the cell¿s final porosity. The idealized system found that the aspect ratio of the cell does not affect the cells functionality and that an aspect ratio of 1 is the most efficient computationally to use. Additionally, at cell sizes greater than 50x50, the conductivity asymptotes to a constant value. Through the infiltrated model simulations, it was found that by increasing the size of the ceramic (YSZ) and pore former particles, the percolation threshold can be decreased and the effective conductivity at low loadings can be increased. Furthermore, by decreasing the porosity of the cell, the percolation threshold and effective conductivity at low loadings can also be increased
Resumo:
Conducted work with two potential alternatives to Ni, La0.8Sr0.2Cr0.5Mn0.5 (LSCM) and Sr doped LaVO3 (LSV) to serve as the electron conductor in the anode of solid oxide fuel cells SOFCs.
Resumo:
The intent of this study was the development of new ceramic SOFC anode materials which possess electrical conductivity as well as redox stability.
Resumo:
Polymer electrolyte fuel cell (PEMFC) is promising source of clean power in many applications ranging from portable electronics to automotive and land-based power generation. However, widespread commercialization of PEMFC is primarily challenged by degradation. The mechanisms of fuel cell degradation are not well understood. Even though the numbers of installed units around the world continue to increase and dominate the pre-markets, the present lifetime requirements for fuel cells cannot be guarantee, creating the need for a more comprehensive knowledge of material’s ageing mechanism. The objective of this project is to conduct experiments on membrane electrode assembly (MEA) components of PEMFC to study structural, mechanical, electrical and chemical changes during ageing and understanding failure/degradation mechanism. The first part of this project was devoted to surface roughness analysis on catalyst layer (CL) and gas diffusion layer (GDL) using surface mapping microscopy. This study was motivated by the need to have a quantitative understanding of the GDL and CL surface morphology at the submicron level to predict interfacial contact resistance. Nanoindentation studies using atomic force microscope (AFM) were introduced to investigate the effect of degradation on mechanical properties of CL. The elastic modulus was decreased by 45 % in end of life (EOL) CL as compare to beginning of life (BOL) CL. In another set of experiment, conductive AFM (cAFM) was used to probe the local electric current in CL. The conductivity drops by 62 % in EOL CL. The future task will include characterization of MEA degradation using Raman and Fourier transform infrared (FTIR) spectroscopy. Raman spectroscopy will help to detect degree of structural disorder in CL during degradation. FTIR will help to study the effect of CO in CL. XRD will be used to determine Pt particle size and its crystallinity. In-situ conductive AFM studies using electrochemical cell on CL to correlate its structure with oxygen reduction reaction (ORR) reactivity
Resumo:
Thermally conductive resins are a class of material that show promise in many different applications. One growing field for their use is in the area of bipolar plate technology for fuel cell applications. In this work, a LCP was mixed with different types of carbon fillers to determine the effects of the individual carbon fillers on the thermal conductivity of the composite resin. In addition, mathematical modeling was performed on the thermal conductivity data with the goal of developing predictive models for the thermal conductivity of highly filled composite resins.
Resumo:
In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack, circulates the gases that participate in the electrochemical reaction within the fuel cell and allows for removal of the excess heat from the system. The materials fabricated in this work were tested to determine their mechanical and thermal properties. These materials were produced by adding varying amounts of single carbon fillers to a polypropylene matrix (2.5 to 15 wt.% Ketjenblack EC-600 JD carbon black, 10 to 80 wt.% Asbury Carbon's Thermocarb TC-300 synthetic graphite, and 2.5 to 15 wt.% of Hyperion Catalysis International's FIBRILTM multi-walled carbon nanotubes) In addition, composite materials containing combinations of these three fillers were produced. The thermal conductivity results showed an increase in both through-plane and in-plane thermal conductivities, with the largest increase observed for synthetic graphite. The Department of Energy (DOE) had previously set a thermal conductivity goal of 20 W/m·K, which was surpassed by formulations containing 75 wt.% and 80 wt.% SG, yielding in-plane thermal conductivity values of 24.4 W/m·K and 33.6 W/m·K, respectively. In addition, composites containing 2.5 wt.% CB, 65 wt.% SG, and 6 wt.% CNT in PP had an in–plane thermal conductivity of 37 W/m·K. Flexural and tensile tests were conducted. All composite formulations exceeded the flexural strength target of 25 MPa set by DOE. The tensile and flexural modulus of the composites increased with higher concentration of carbon fillers. Carbon black and synthetic graphite caused a decrease in the tensile and flexural strengths of the composites. However, carbon nanotubes increased the composite tensile and flexural strengths. Mathematical models were applied to estimate through-plane and in-plane thermal conductivities of single and multiple filler formulations, and tensile modulus of single-filler formulations. For thermal conductivity, Nielsen's model yielded accurate thermal conductivity values when compared to experimental results obtained through the Flash method. For prediction of tensile modulus Nielsen's model yielded the smallest error between the predicted and experimental values. The second part of this project consisted of the development of a curriculum in Fuel Cell and Hydrogen Technologies to address different educational barriers identified by the Department of Energy. By the creation of new courses and enterprise programs in the areas of fuel cells and the use of hydrogen as an energy carrier, we introduced engineering students to the new technologies, policies and challenges present with this alternative energy. Feedback provided by students participating in these courses and enterprise programs indicate positive acceptance of the different educational tools. Results obtained from a survey applied to students after participating in these courses showed an increase in the knowledge and awareness of energy fundamentals, which indicates the modules developed in this project are effective in introducing students to alternative energy sources.