888 resultados para MICELLAR ELECTROKINETIC CHROMATOGRAPHY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work described herein is aimed at understanding primary and secondary aggregation of bile salt micelles and how micelles can perform chiral recognition of binapthyl analytes. Previous work with cholate and deoxycholate using micellar electrokinetic chromatography (MEKC) and nuclear magnetic resonance (NMR) has provided insightinto cholate and deoxycholate micelle formation, especially with respect to the critical micelle concentration (CMC). Chiral separations of the model analyte, 1,1â??-binaphthyl-2,2â??-diyl hydrogen phosphate (BNDHP), via cholate (C) and deoxycholate (DC) mediated MEKC separataions previously have shown the DC CMC to be 7-10 mM andthe cholate CMC at 14 mM at ph 12. A second model analyte,1,1â??-binaphthol (BN), was also previously investigated to probe micellar structure, but the MEKC data for this analyte implied a higher CMC, which may be interpreted as secondary aggregation. Thiswork extends the investigation of bile salts to include pulsed field gradient spin echo (PFGSE) NMR experiments being used to gain information about the size and degree of polydispersity of cholate and deoxycholate micelles. Concentrations of cholate below 10mM show a large variation in effective radius likely due to the existence of transient preliminary aggregates. The onset of the primary micelle shows a dramatic increase in effective radius of the micelle in cholate and deoxycholate. In the region of expectedsecondary aggregation a gradual increase of effective radius was observed with cholate; deoxycholate showed a persistent aggregate size in the secondary micelle region that is modulated by the presence of an analyte molecule. Effective radii of cholate anddeoxycholate (individually) were compared with and without R- and S-BNDHP in order to observe the effective radius difference of micelles with and without analyte present. The presence of S-BNDHP consistently resulted in a larger effective aggregate radius incholate and deoxycholate, confirming previous data of the S-BNDHP interacting more with the micelle than R-BNDHP. In total, various NMR techniques, like diffusion NMR can be used to gain a greater understanding of the bile salt micellization process and chiral resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

No presente trabalho foram estudadas as separações de 18 flavonóides (9 agliconas e 9 glicosídeos) pelas técnicas de Cromatografia Líquida de Alta Eficiência em fase reversa (RP-HPLC) e Cromatografia Micelar Eletrocinética em fluxo reverso (RF-Meck). Em ambas as técnicas foram avaliados solventes puros (metanol, acetonitrila e tetrahidrofurano) e suas misturas como formas de promover a variação de seletividade, através da modificação da fase móvel em HPLC, e da natureza do aditivo orgânico em RF-Meck. Nos estudos efetuados em HPLC utilizando-se gradiente, pode-se comprovar a possibilidade da modelagem do fator de retenção em funçã da proporção de solvente utilizados (MeOH, ACN, THF e suas misturas). Pode-se ainda, com base nos dados de retenção e na análise hierárquica de c1usters, diferenciar quatro diferentes grupos de sistemas cromatográficos com diferentes seletividades para flavonóides agliconas, e outros quatro com diferentes seletividades para glicosídeos. Os sistemas cromatográficos mais ortogonais (cada um pertencente a um grupo de seletividade) foram aplicados na separação de uma planta modelo (Azadirachta indica), de onde pode-se escolher a fase móvel mais seletiva para se otimizar a separação dos flavonóides glicosilados presentes nas folhas desta planta. No método final otimizado pode-se identificar e quantificar cinco dos flavonóides majoritários presentes, sendo três glicosídeos de quercetina (rutina, isoquercitrina e quercitrina) e dois glicosídeos de kaempferol (astragalin e nicotiflorin), em amostras de duas diferentes procedências (Piracicaba-SP e Silvânia-GO). Nos estudos envolvendo a separação dos dezoito flavonóides por RFMEKC pode-se comprovar diferenças significativas de seletividade quando se varia a natureza do solvente orgânico utilizado como aditivo, além de se observar tendências na migração em função das propriedades do solvente adicionado e da estrutura molecular do flavonóide. O solvente de menor eficiência para separação dos flavonóides foi o MeOH. Através da análise dos eletroferogramas obtidos através de um planejamento experimental de misturas, e das trocas de pares críticos observadas nos vários eletrólitos utilizados, obteve-se um método de separação com apenas um par crítico em menos de 12 minutos de corrida. O coeficiente de variação obtido para o fator de retenção foi de 1,5% e para área de 3%, considerando-se cinco injeções. O método desenvolvido foi aplicado com sucesso na identificação dos flavonóides majoritários presentes na planta modelo (Neem), obtendo-se o mesmo resultado do estudo anterior. Como forma de avaliar a concentração de flavonóides totais presentes em espécies vegetais é comum a análise de extratos após hidrólise ácida (conversão de todos glicosídeos em agliconas). Desta forma otimizou-se uma metodologia de separação em RP-HPLC de 8 flavonóides agliconas comumente presentes em alimentos e extratos vegetais de uso cosmético. A otimização foi efetuada mediante um planejamento experimental de misturas, para escolha da fase móvel mais seletiva, e de um planejamento fatorial composto central, para otimização das condições de gradiente. O método obtido foi o mais rápido já visto dentro da literatura consultada. A separação em linha de base foi efetuada em menos de 15 minutos, com coeficientes de variação de área entre 0,1 e 1,8%, coeficiente de correlação de 0,9993 a 0,9994 na faixa de 5 a 100 µg/mL, e limites de quantificação estimados na faixa de 0,1 a 0,21µg/mL. O método desenvolvido foi aplicado na otimização das condições de hidrólise de um extrato de Neem. A otimização foi efetuada através de metodologia de superfície de resposta, levando-se em consideração a concentração de ácido adicionada, o tempo de reação, a temperatura, e a concentração de um antioxidante (ácido ascórbico) adicionado. O resultado da otimização foi uma metodologia de hidrólise com tempo de reação igual a 5 minutos, utilizando-se 1,4 mol/L de HCI, 119°C e 500 µg/mL de ácido ascórbico. Através das metodologias de análise e de hidrólise desenvolvidas pode-se constatar a presença e quantificar no extrato de Neem os flavonóides agliconas quercetina, kaempferol e miricetina. Com o objetivo de se avaliar quais os componentes presentes em extratos vegetais são os responsáveis pelo poder antioxidante atribuído a determinadas plantas, foi montado um sistema de avaliação de poder antioxidante \"on-line\" com reação pós-coluna em HPLC (baseado na literatura) utilizando-se como \"radical livre modelo\" o ABTS. A análise da planta modelo (Neem) neste sistema mostrou que os flavonóides glicosilados identificados nas partes anteriores deste trabalho são os responsáveis pelo poder antioxidante atribuído a esta planta. De posse desta informação, e visando a obtenção de extratos para aplicações cosméticas com poder antioxidante, modelou-se a extração dos flavonóide do Neem em função da composição do solvente extrator (água, etanol , propilenoglicol e suas misturas), de acordo com um planejamento simplex centróide ampliado. Além da previsão da concentração dos princípios ativos pode-se ainda prever outras propriedades dos extratos obtidos, tais como, índice de refração e densidade, muitas vezes constituintes de especificações técnicas de acordo com as aplicações a que se destinam (cremes, xampús, etc).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A fast and sensitive approach to detect reserpine in urine using micellar electrokinetic capillary chromatography with electrochemiluminescence (ECL) of Ru(bpy)(3)(2+) detection is described. Using a 25 mum i.d. capillary as separation column, the ECL detector was coupled to the capillary in the absence of an electric field decoupler. Field-amplified injection was used to minimize the effect of ionic strength in the sample and to achieve high sensitivity. In this way, the sample was analyzed directly without any pretreatment. The method was validated for reserpine in the urine over the range of 1 x 10(-6) - 1 x 10(-4) mol/L with a correlation coefficient of 0.996. The RSD for reserpine at a level of 5 mumol/L was 4.3%. The LOD (S/N = 3) was estimated to be 7.0 x 10(-8) mol/L. The average recoveries for 10 mumol/L reserpine spiked in human urine were 94%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents simple, rapid, precise and accurate stability-indicating HPLC and CE methods, which were developed and validated for the determination of nitrendipine, nimodipine and nisoldipine. These drugs are calcium channel antagonists of the 1,4-dihydropyridine type which are used in the treatment of cardiovascular diseases. Experimental results showed a good linear correlation between the area and the concentration of drugs covering a relatively large domain of concentration in all cases. The linearity of the analytical procedures was in the range of 2.0-120.0 mu g mL-1 for nitrendipine, 1.0-100.0 mu g mL(-1) for nimodipine and 100.0-600.0 mu g mL(-1) for nisoldipine, the regression determination coefficient being higher than 0.99 in all cases. The proposed methods were found to have good precision and accuracy. The chemical stability of these drugs was determined under various conditions and the methods have shown adequate separation for their enantiomers and degradation products. In addition, degradation products produced as a result of stress studies did not interfere with the detection of the drugs' enantiomers and the assays can thus be considered stability-indicating.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Micelle-forming bile salts have previously been shown to be effective pseudo-stationary phases for separating the chiral isomers of binaphthyl compounds with micellar electrokinetic capillary chromatography (MEKC). Here, cholate micelles are systematically investigated via electrophoretic separations and NMR using R, S-1, 1¿- binaphthyl- 2, 2¿-diylhydrogenphosphate (BNDHP) as a model chiral analyte. The pH, temperature, and concentration of BNDHP were systematically varied while monitoring the chiral resolution obtained with MEKC and the chemical shift of various protons in NMR. NMR data for each proton on BNDHP is monitored as a function of cholate concentration: as cholate monomers begin to aggregate and the analyte molecules begin to sample the micelle aggregate we observe changes in the cholate methyl and S-BNDHP proton chemical shifts. From such NMR data, the apparent CMC of cholate at pH 12 is found to be about 13-14 mM, but this value decreases at higher pH, suggesting that more extreme pHs may give rise to more effective separations. In general, CMCs increase with temperature indicating that one may be able to obtain better separations at lower temperatures. S-BNDHP concentrations ranging from 50 ¿M to 400 ¿M (pH 12.8) gave rise to apparent cholate CMC values from 10 mM to 8 mM, respectively, indicating that S-BNDHP, the chiral analyte molecule, may play an active role in stabilizing cholate aggregates. In all, these data show that NMR can be used to systematically investigate a complex multi-variable landscape of potential optimizations of chiral separations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bile salts are known to aggregate into micelles in biological systems; however, the fundamental structure and dynamics of bile molecule micelle formation are poorly understood. Previous studies have established that the bile salt cholate is capable of performing chirally selective micellar electrokinetic capillary chromatography (MEKC) separations of model racemic binaphthyl compounds 1,1¿-binaphthyl-2,2¿-diyl hydrogen phosphate (R,S-BNDHP) and 1,1¿-bi-2-naphthol (R,S-BN). Nuclear magnetic resonance (NMR) has been established as a complementary technique for understanding chiral selectivity and micelle formation events based on changes in proton chemical shifts of the probe molecules BNDHP and BN as well as of cholate. This work investigated the effects of the probe molecule, the alkali cation identity and temperature on cholate micelle aggregation and MEKC separations of R,S-BN and R,S-BNDHP. The probe molecule was found to mediate micelle formation by MEKC and proton NMR. A low (0.1 mM) concentration of probe was found to have minimal effects on micellization events detected by proton NMR while higher probe concentration (2.5 mM) was found to mediate micellization causing micellization events to occur at lower cholate concentrations. This work also investigated the effects of alkali counterion on chiral separation. Generally, counterions with larger crystal cationic radius were found to cause greater chiral separation power. NMR data suggest that protons near the surface of the cholate micelle are most sensitive to the cation identity, suggesting a model of improved separation based on the cation sterically inhibiting binding of one isomer. Finally, the effect of temperature on MEKC separation was investigated. Separation power of R,S-BN and R,S-BNDHP appeared to increase linearly with temperature for 22.0 mM to 50.0 mM pH 12.0 cholate. In total, these results indicate that cholate aggregation is dependent on multiple conditions. Understanding the roles that these factors play in influencing cholate micellization can inform better separation in MEKC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rule of current change was studied during capillary electrophoresis (CE) separation process while the conductivity of the sample solution was different from that of the buffer. Using a quadratic spline wavelet of compact support, the wavelet transforms (WTs) of capillary electrophoretic currents were performed. The time corresponding to the maximum of WT coefficients was chosen as the time of current inflection to calculate electroosmotic mobility. The proposed method was suitable for different CE modes, including capillary zone electrophoresis, nonaqueous CE and micellar electrokinctic chromatography. Compared with the neutral marker method, the relative errors of the developed method for the determination of electroosmotic mobility were all below 2.5%. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence detection in a capillary electrophoresis separation system was used for the determination of diphenhydramine. In this study, platinum disk electrode (300 mum in diameter) was used as a working electrode and the influence of applied potential and buffer conditions were investigated. Under optimal conditions: 1.2 V applied potential, pH 8.50, 15 kV separation voltage and 10 mmol l(-1) running buffer, the calibration curve of diphenhydramine was linear over the range of 4 x 10(-8) to 1 x 10(-5) Mol l(-1). This technique gave satisfactory precision, and relative standard deviations of migration times and chemiluminescence peak intensities were less than 1 and 6%, respectively. The technique was applied to animal studies for determination of diphenhydramine extracted from rabbit plasma and urine samples, and the extraction efficiency were between 92 and 98.5%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four phenothiazines, promethazine, dioxypromethazine, chlorpromazine, and trifluoperazine have been separated by capillary electrophoresis using N, N, -dimethylformamide (DMF) as separation medium with UV absorbance detection. High voltage and concentrated buffer were used with small current and low electroosmosis. Good resolution and high column efficiency were obtained. Separation selectivity in DMI; was different from that in water because of the different solvation interactions. The influence of buffer composition on separation selectivities and electroosmosis were also studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Micelle/water partition coefficients for three dialkyl phthalate esters - dimethyl phthalate ester (DMP), diethyl phthalate ester (DEP) and dipropyl phthalate ester (DPP) were obtained by micellar liquid chromatography (MLC). Experiments were conducted over a temperature range which led to calculation of a Gibbs free energy, enthalpy and entropy of transfer for the phthalate esters. In addition, small angle neutron scattering (SANS) experiments were conducted with no substantial change observed in micelle size before and after phthalate ester incorporation. Overall, a novel method for obtaining thermodynamic information, based on partitioning data, has been developed for dialkyl phthalate esters using micellar liquid chromatography.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An all-in-one version of a capacitively coupled contactless conductivity detector is introduced. The absence of moving parts (potentiometers and connectors) makes it compact (6.5 cm(3)) and robust. A local oscillator, working at 1.1 MHz, was optimized to use capillaries of id from 20 to 100 lam. Low noise circuitry and a high-resolution analog-to-digital converter (ADC) (21 bits effective) grant good sensitivities for capillaries and background electrolytes currently used in capillary electrophoresis. The fixed frequency and amplitude of the signal generator is a drawback that is compensated by the steady calibration curves for conductivity. Another advantage is the possibility of determining the inner diameter of a capillary by reading the ADC when air and subsequently water flow through the capillary. The difference of ADC reading may be converted into the inner diameter by a calibration curve. This feature is granted by the 21-bit ADC, which eliminates the necessity of baseline compensation by hardware. In a typical application, the limits of detection based on the 3 sigma criterion (without baseline filtering) were 0.6, 0.4, 0.3, 0.5, 0.6, and 0.8 mu mol/L for K(+), Ba(2+), Ca(2+), Na(+), Mg(2+), and Li(+), respectively, which is comparable to other high-quality implementations of a capacitively coupled contactless conductivity detector.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protein hydrolysates have been used as active principles in cosmetic products conferring different properties to the final formulations, which are mostly controlled by the peptide size and its amino acid sequence. In this work, capillary electrophoresis coupled to mass spectrometry analyses were carried out in order to investigate such characteristics of protein hydrolysates. Samples of different origins (milk, soy and rice) were obtained from a local company, and were analyzed without a previous preparation step. The background electrolyte (BGE) and sheath liquid compositions were optimized for each sample. The best BGE composition (860 mmol/L formic acid - pH 1.8 - in 70: 30 v/v water/methanol hydro-organic solvent) was chosen based on the overall peak resolution whereas the best sheath liquid was selected based on increased sensitivity and presented different compositions to each sample (10.9-217 mmol/L formic acid in 75: 25-25: 75 v/v water/methanol hydro-organic solvent). Most of the putative peptides in the hydrolysate samples under investigation presented molecular masses of 1000 Da or less. De novo sequencing was carried out for some of the analytes, revealing the hydrophobicity/polarity of the peptides. Hence, the technique has proved to be an advantageous tool for the quality control of industrial protein hydrolysates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a new way to perform hydrodynamic chromatography (HDC) for the size separation of particles based on a unique recirculating flow pattern. Pressure-driven (PF) and electro-osmotic flows (EOF) are opposed in narrow glass microchannels that expand at both ends. The resulting bidirectional flow turns into recirculating flow because of nonuniform microchannel dimensions. This hydrodynamic effect, combined with the electrokinetic migration of the particles themselves, results in a trapping phenomenon, which we have termed flow-induced electrokinetic trapping (FIET). In this paper, we exploit recirculating flow and FIET to perform a size-based separation of samples of microparticles trapped in a short separation channel using a HDC approach. Because these particles have the same charge (same zeta potential), they exhibit the same electrophoretic mobility, but they can be separated according to size in the recirculating flow. While trapped, particles have a net drift velocity toward the low-pressure end of the channel. When, because of a change in the externally applied PF or electric field, the sign of the net drift velocity reverses, particles can escape the separation channel in the direction of EOF. Larger particles exhibit a larger net drift velocity opposing EOF, so that the smaller particles escape the separation channel first. In the example presented here, a sample plug containing 2.33 and 2.82 microm polymer particles was introduced from the inlet into a 3-mm-long separation channel and trapped. Through tuning of the electric field with respect to the applied PF, the particles could be separated, with the advantage that larger particles remained trapped. The separation of particles with less than 500 nm differences in diameter was performed with an analytical resolution comparable to that of baseline separation in chromatography. When the sample was not trapped in the separation channel but located further downstream, separations could be carried out continuously rather than in batch. Smaller particles could successfully pass through the separation channel, and particles were separated by size. One of the main advantages of exploiting FIET for HDC is that this method can be applied in quite short (a few millimeters) channel geometries. This is in great contrast to examples published to date for the separation of nanoparticles in much longer micro- and nanochannels.